Sums of Three Prime Squares
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 549-558

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $A, \epsilon > 0$ be arbitrary. Suppose that $x$ is a sufficiently large positive number. We prove that the number of integers $n \in (x, x+x^\theta]$, satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is $\ll x^\theta(\log x)^{-A}$, provided that $\frac{7}{16} + \epsilon \leq \theta \leq 1$.
@article{BUMI_2007_8_10B_3_a3,
     author = {Mikawa, Hiroshi and Peneva, Temenoujka},
     title = {Sums of {Three} {Prime} {Squares}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {549--558},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1177.11086},
     mrnumber = {2351527},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/}
}
TY  - JOUR
AU  - Mikawa, Hiroshi
AU  - Peneva, Temenoujka
TI  - Sums of Three Prime Squares
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 549
EP  - 558
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/
LA  - en
ID  - BUMI_2007_8_10B_3_a3
ER  - 
%0 Journal Article
%A Mikawa, Hiroshi
%A Peneva, Temenoujka
%T Sums of Three Prime Squares
%J Bollettino della Unione matematica italiana
%D 2007
%P 549-558
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/
%G en
%F BUMI_2007_8_10B_3_a3
Mikawa, Hiroshi; Peneva, Temenoujka. Sums of Three Prime Squares. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 549-558. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/