Sums of Three Prime Squares
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 549-558.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $A, \epsilon > 0$ be arbitrary. Suppose that $x$ is a sufficiently large positive number. We prove that the number of integers $n \in (x, x+x^\theta]$, satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is $\ll x^\theta(\log x)^{-A}$, provided that $\frac{7}{16} + \epsilon \leq \theta \leq 1$.
Siano $A, \epsilon > 0$ arbitrari. Supponiamo che $x$ sia un numero positivo sufficientemente grande. Proviamo che il numero di interi $n$ appartenenti ad $(x, x+x^\theta]$, e soddisfacenti alcune condizioni di congruenza naturali, che non si possono scrivere come somma di tre quadrati di primi è $\ll x^\theta(\log x)^{-A}$ con $\frac{7}{16}+ \epsilon \leq \theta \leq 1$.
@article{BUMI_2007_8_10B_3_a3,
     author = {Mikawa, Hiroshi and Peneva, Temenoujka},
     title = {Sums of {Three} {Prime} {Squares}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {549--558},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1177.11086},
     mrnumber = {2351527},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/}
}
TY  - JOUR
AU  - Mikawa, Hiroshi
AU  - Peneva, Temenoujka
TI  - Sums of Three Prime Squares
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 549
EP  - 558
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/
LA  - en
ID  - BUMI_2007_8_10B_3_a3
ER  - 
%0 Journal Article
%A Mikawa, Hiroshi
%A Peneva, Temenoujka
%T Sums of Three Prime Squares
%J Bollettino della Unione matematica italiana
%D 2007
%P 549-558
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/
%G en
%F BUMI_2007_8_10B_3_a3
Mikawa, Hiroshi; Peneva, Temenoujka. Sums of Three Prime Squares. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 549-558. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/

[1] C. Bauer - M. C. Liu - T. Zhan, On a sum of three prime squares, J. Number Theory, 85 (2000), 336-359. | DOI | MR | Zbl

[2] P. X. Gallagher, A large sieve density estimate near $\sigma=1$, Invent. Math., 11 (1970), 329-339. | fulltext EuDML | DOI | MR | Zbl

[3] L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. Oxford, 9 (1938), 68-80. | DOI | MR | Zbl

[4] M. N. Huxley, Large values of Dirichlet polynomials III, Acta Arith., 26 (1975), 435- 444. | fulltext EuDML | DOI | MR | Zbl

[5] M. C. Leung - M. C. Liu, On generalized quadratic equations in three prime variables, Monatsh. Math., 115 (1993), 133-169. | fulltext EuDML | DOI | MR | Zbl

[6] J. Y. Liu - T. Zhan, Distribution of integers that are sums of three squares of primes, Acta Arith., 98 (2001), 207-228. | fulltext EuDML | DOI | MR | Zbl

[7] J. Y. Liu - T. Zhan, On a theorem of Hua, Arch. Math. (Basel), 69 (1997), 375-390. | DOI | MR | Zbl

[8] H. Mikawa, On the sum of three squares of primes, In: Analytic Number Theory (Kyoto, 1996), 253-264, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. | DOI | MR | Zbl

[9] A. Perelli - J. Pintz, Hardy-Littlewood numbers in short intervals, J. Number Theory, 54 (1995), 297-308. | DOI | MR | Zbl

[10] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin-New York, 1978. | MR

[11] W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen, II, J. Reine Angew. Math., 206 (1961), 78-112. | fulltext EuDML | DOI | MR