Sums of Three Prime Squares
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 549-558
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Let $A, \epsilon > 0$ be arbitrary. Suppose that $x$ is a sufficiently large positive number. We prove that the number of integers $n \in (x, x+x^\theta]$, satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is $\ll x^\theta(\log x)^{-A}$, provided that $\frac{7}{16} + \epsilon \leq \theta \leq 1$.
@article{BUMI_2007_8_10B_3_a3,
author = {Mikawa, Hiroshi and Peneva, Temenoujka},
title = {Sums of {Three} {Prime} {Squares}},
journal = {Bollettino della Unione matematica italiana},
pages = {549--558},
year = {2007},
volume = {Ser. 8, 10B},
number = {3},
zbl = {1177.11086},
mrnumber = {2351527},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/}
}
Mikawa, Hiroshi; Peneva, Temenoujka. Sums of Three Prime Squares. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 549-558. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a3/