Jacobi's Triple Product Identity and the Quintuple Product Identity
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 867-874.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The simplest proof of Jacobi's triple product identity originally due to Cauchy (1843) and Gauss (1866) is reviewed. In the same spirit, we prove by means of induction principle and finite difference method, a finite form of the quintuple product identity. Similarly, the induction principle will be used to give a new proof of another algebraic identity due to Guo and Zeng (2005), which can be considered as another finite form of the quintuple product identity.
La famosa identità di Jacobi riguardante il prodotto triplo viene esaminata grazie alle due dimostrazioni piu semplici dovute a Cauchy (1843) e Gauss (1866). Applicando il principio di induzione ed il metodo di differenze finite, lo stesso spirito ci conduce alla riconferma delle due forme finite dell'identità di prodotto quintuplo.
@article{BUMI_2007_8_10B_3_a28,
     author = {Chu, Wenchang},
     title = {Jacobi's {Triple} {Product} {Identity} and the {Quintuple} {Product} {Identity}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {867--874},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1183.33030},
     mrnumber = {2507902},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a28/}
}
TY  - JOUR
AU  - Chu, Wenchang
TI  - Jacobi's Triple Product Identity and the Quintuple Product Identity
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 867
EP  - 874
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a28/
LA  - en
ID  - BUMI_2007_8_10B_3_a28
ER  - 
%0 Journal Article
%A Chu, Wenchang
%T Jacobi's Triple Product Identity and the Quintuple Product Identity
%J Bollettino della Unione matematica italiana
%D 2007
%P 867-874
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a28/
%G en
%F BUMI_2007_8_10B_3_a28
Chu, Wenchang. Jacobi's Triple Product Identity and the Quintuple Product Identity. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 867-874. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a28/

[1] K. Alladi, The quintuple product identity and shifted partition functions, J. Comput. Appl. Math., 68 (1996), 3-13. | DOI | MR | Zbl

[2] G. E. Andrews, A simple proof of Jacobi's triple product identity, Proc. Amer. Math., 16 (1965), 333-334. | DOI | MR | Zbl

[3] G. E. Andrews, Applications of basic hypergeometric functions, SIAM Review, 16 (1974), 441-484. | DOI | MR | Zbl

[4] G. E. Andrews - R. Askey - R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000. | DOI | MR

[5] A. O. L. Atkin - P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc., 4 (1954), 84-106. | DOI | MR | Zbl

[6] W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. (Oxford) 7 (1936), 105-115. | Zbl

[7] W. N. Bailey, On the simplification of some identities of the Rogers-Ramanujan type, Proc. London Math. Soc., 1 (1951), 217-221. | DOI | MR | Zbl

[8] L. Carlitz - M. V. Subbarao, A simple proof of the quintuple product identity, Proc. Amer. Math. Society, 32, 1 (1972), 42-44. | DOI | MR

[9] W. Y. C. Chen - W. Chu - N. S. S. Gu, Finite form of the quintuple product identity, Journal of Combinatorial Theory (Series A), 113, 1 (2006), 185-187. | DOI | MR | Zbl

[10] W. Chu, Durfee rectangles and the Jacobi triple product identity, Acta Math. Sinica [New Series], 9, 1 (1993), 24-26. | DOI | MR | Zbl

[11] W. Chu, Abel's Lemma on summation by parts and Ramanujan's ${}_1\psi_1$-series Identity, Aequationes Mathematicae, 72, 1/2 (2006), 172-176. | DOI | MR | Zbl

[12] W. Chu, Abel's Method on summation by parts and Hypergeometric Series, Journal of Difference Equations and Applications, 12, 8 (2006). | DOI | MR | Zbl

[13] W. Chu, Abel's Lemma on summation by parts and Basic Hypergeometric Series, Advances in Applied Mathematics, 39, 4 (2007), 490-514. | DOI | MR | Zbl

[14] W. Chu - C. Z. Jia, Abel's Method on summation by parts and Terminating Well- Poised q-Series Identities, Journal of Computational and Applied Mathematics, 207, 2 (2007), 360-370. | DOI | MR | Zbl

[15] S. Copper, The quintuple product identity, International J. of Number Theory, 2, 1 (2006), 115-161. | DOI | MR | Zbl

[16] R. J. Evans, Theta function identities, J. Math. Anal. Appl., 147, 1 (1990), 97-121. | DOI | MR | Zbl

[17] J. A. Ewell, An easy proof of the triple product identity, Amer. Math. Month., 88 (1981), 270-272. | DOI | MR | Zbl

[18] H. M. Farkas - Irwin Kra, On the quintuple product identity, Proc. Amer. Math. Soc., 127, 3 (1999), 771-778. | DOI | MR | Zbl

[19] G. Gasper - M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, 2004. | DOI | MR | Zbl

[20] B. Gordon, Some identities in combinatorial analysis, Quart. J. Math. Oxford, 12 (1961), 285-290. | DOI | MR | Zbl

[21] M. D. Hirschhorn A generalization of the quintuple product identity, J. Austral. Math. Soc., A44 (1988), 42-45. | MR | Zbl

[22] R. P. Lewis, A combinatorial proof of the triple product identity, Amer. Math. Month., 91 (1984), 420-423. | DOI | MR | Zbl

[23] L. J. Mordell, An identity in combinatorial analysis, Proc. Glasgow Math. Ass., 5 (1961), 197-200. | MR | Zbl

[24] P. Paule, Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type, Electronic J. of Combinatorics, 1 (1994), R#10. | fulltext EuDML | MR | Zbl

[25] D. B. Sears, Two identities of Bailey, J. London Math. Soc., 27 (1952), 510-511. | DOI | MR

[26] M. V. Subbarao - M. Vidyasagar, On Watson's quintuple product identity, Proc. Amer. Math. Society, 26, 1 (1970), 23-27. | DOI | MR | Zbl

[27] G. N. Watson, Theorems stated by Ramanujan VII: Theorems on continued fractions, J. London Math. Soc., 4 (1929), 39-48. | DOI | MR | Zbl

[28] G. N. Watson, Ramanujan's Vertumung über Zerfallungsanzahlen, J. Reine Angrew. Math., 179 (1938), 97-128. | fulltext EuDML | DOI | MR

[29] E. M. Wright, An enumerative proof of an identity of Jacobi, J. of London Math. Soc., 40 (1965), 55-57. | DOI | MR | Zbl

[30] V. J. W. Guo - J. Zeng, Short proofs of summation and transformation formulas for basic hypergeometric series, Journal of Mathematical Analysis and Applications, 327, 1 (2007), 310-325. | DOI | MR | Zbl