Quasiharmonic Fields: a Higher Integrability Result
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 843-851
In this paper we study the degree of integrability of quasiharmonic fields. These fields are connected with the study of the equation $\operatorname{div}(A(x)\nabla u(x))= 0$, where the symmetric matrix $A(x)$ satisfies the condition $|\xi|^2+|A(x)\xi|^2 \leq K(x)\langle A(x)\xi,\xi\rangle$.The nonnegative function $K(x)$ belongs to the exponential class, i.e. $\exp(\beta K(x))$ is integrable for some $\beta >0$. We prove that the gradient of a local solution of the equation belongs to the Zygmund spaces $L^2_{\text{loc}} \log^{\alpha - 1}L$, $0 \alpha = \alpha (\beta)$. Moreover we show exactly how the degree of improved regularity depends on $\beta$.
@article{BUMI_2007_8_10B_3_a26,
author = {Di Gironimo, Patrizia},
title = {Quasiharmonic {Fields:} a {Higher} {Integrability} {Result}},
journal = {Bollettino della Unione matematica italiana},
pages = {843--851},
year = {2007},
volume = {Ser. 8, 10B},
number = {3},
zbl = {1184.35134},
mrnumber = {2507900},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/}
}
Di Gironimo, Patrizia. Quasiharmonic Fields: a Higher Integrability Result. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 843-851. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/