Quasiharmonic Fields: a Higher Integrability Result
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 843-851
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper we study the degree of integrability of quasiharmonic fields. These fields are connected with the study of the equation $\operatorname{div}(A(x)\nabla u(x))= 0$, where the symmetric matrix $A(x)$ satisfies the condition $|\xi|^2+|A(x)\xi|^2 \leq K(x)\langle A(x)\xi,\xi\rangle$.The nonnegative function $K(x)$ belongs to the exponential class, i.e. $\exp(\beta K(x))$ is integrable for some $\beta >0$. We prove that the gradient of a local solution of the equation belongs to the Zygmund spaces $L^2_{\text{loc}} \log^{\alpha - 1}L$, $0 \alpha = \alpha (\beta)$. Moreover we show exactly how the degree of improved regularity depends on $\beta$.
@article{BUMI_2007_8_10B_3_a26,
author = {Di Gironimo, Patrizia},
title = {Quasiharmonic {Fields:} a {Higher} {Integrability} {Result}},
journal = {Bollettino della Unione matematica italiana},
pages = {843--851},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {3},
year = {2007},
zbl = {1184.35134},
mrnumber = {2507900},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/}
}
Di Gironimo, Patrizia. Quasiharmonic Fields: a Higher Integrability Result. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 843-851. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/