Quasiharmonic Fields: a Higher Integrability Result
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 843-851

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the degree of integrability of quasiharmonic fields. These fields are connected with the study of the equation $\operatorname{div}(A(x)\nabla u(x))= 0$, where the symmetric matrix $A(x)$ satisfies the condition $|\xi|^2+|A(x)\xi|^2 \leq K(x)\langle A(x)\xi,\xi\rangle$.The nonnegative function $K(x)$ belongs to the exponential class, i.e. $\exp(\beta K(x))$ is integrable for some $\beta >0$. We prove that the gradient of a local solution of the equation belongs to the Zygmund spaces $L^2_{\text{loc}} \log^{\alpha - 1}L$, $0 \alpha = \alpha (\beta)$. Moreover we show exactly how the degree of improved regularity depends on $\beta$.
@article{BUMI_2007_8_10B_3_a26,
     author = {Di Gironimo, Patrizia},
     title = {Quasiharmonic {Fields:} a {Higher} {Integrability} {Result}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {843--851},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1184.35134},
     mrnumber = {2507900},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/}
}
TY  - JOUR
AU  - Di Gironimo, Patrizia
TI  - Quasiharmonic Fields: a Higher Integrability Result
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 843
EP  - 851
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/
LA  - en
ID  - BUMI_2007_8_10B_3_a26
ER  - 
%0 Journal Article
%A Di Gironimo, Patrizia
%T Quasiharmonic Fields: a Higher Integrability Result
%J Bollettino della Unione matematica italiana
%D 2007
%P 843-851
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/
%G en
%F BUMI_2007_8_10B_3_a26
Di Gironimo, Patrizia. Quasiharmonic Fields: a Higher Integrability Result. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 843-851. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a26/