A New $L^1$-Lower Semicontinuity Result
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 797-818
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
The aim of this work is to prove a chain rule and an $L^1$-lower semicontinuity theorems for integral functional defined on $BV(\Omega)$. Moreover we apply this result in order to obtain new relaxation and $\Gamma$-convergence result without any coerciveness and any continuity assumption of the integrand $f(x, s, p)$ with respect to the variable $s$.
@article{BUMI_2007_8_10B_3_a23,
author = {Graziani, Daniele},
title = {A {New} $L^1${-Lower} {Semicontinuity} {Result}},
journal = {Bollettino della Unione matematica italiana},
pages = {797--818},
year = {2007},
volume = {Ser. 8, 10B},
number = {3},
zbl = {1181.49012},
mrnumber = {2507897},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a23/}
}
Graziani, Daniele. A New $L^1$-Lower Semicontinuity Result. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 797-818. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a23/