Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 785-795

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we prove the existence of a solution for a problem whose model is: \begin{equation*} \begin{cases} -\Delta u + \frac{u}{\sigma - |u|} = \gamma |\nabla u|^{2} + f(x) \text{in } \Omega \\ u = 0 \text{on } \partial \Omega \end{cases} \end{equation*} with $f(x)$ in $L^{1}(\Omega)$ and $\sigma$, $\gamma > 0$.
@article{BUMI_2007_8_10B_3_a22,
     author = {Leonori, Tommaso},
     title = {Bounded {Solutions} for {Some} {Dirichlet} {Problems} with $L^1(\Omega)$ {Data}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {785--795},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1184.35129},
     mrnumber = {2507896},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/}
}
TY  - JOUR
AU  - Leonori, Tommaso
TI  - Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 785
EP  - 795
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/
LA  - en
ID  - BUMI_2007_8_10B_3_a22
ER  - 
%0 Journal Article
%A Leonori, Tommaso
%T Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
%J Bollettino della Unione matematica italiana
%D 2007
%P 785-795
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/
%G en
%F BUMI_2007_8_10B_3_a22
Leonori, Tommaso. Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 785-795. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/