Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 785-795.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we prove the existence of a solution for a problem whose model is: \begin{equation*} \begin{cases} -\Delta u + \frac{u}{\sigma - |u|} = \gamma |\nabla u|^{2} + f(x) \text{in } \Omega \\ u = 0 \text{on } \partial \Omega \end{cases} \end{equation*} with $f(x)$ in $L^{1}(\Omega)$ and $\sigma$, $\gamma > 0$.
In questo lavoro viene dimostrata l'esistenza di una soluzione per un problema il cui modello è: \begin{equation*} \begin{cases} -\Delta u + \frac{u}{\sigma - |u|} = \gamma |\nabla u|^{2} + f(x) \text{in } \Omega \\ u = 0 \text{on } \partial \Omega \end{cases} \end{equation*} con $f(x)$ in $L^{1}(\Omega)$ e $\sigma$, $\gamma > 0$.
@article{BUMI_2007_8_10B_3_a22,
     author = {Leonori, Tommaso},
     title = {Bounded {Solutions} for {Some} {Dirichlet} {Problems} with $L^1(\Omega)$ {Data}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {785--795},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1184.35129},
     mrnumber = {2507896},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/}
}
TY  - JOUR
AU  - Leonori, Tommaso
TI  - Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 785
EP  - 795
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/
LA  - en
ID  - BUMI_2007_8_10B_3_a22
ER  - 
%0 Journal Article
%A Leonori, Tommaso
%T Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
%J Bollettino della Unione matematica italiana
%D 2007
%P 785-795
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/
%G en
%F BUMI_2007_8_10B_3_a22
Leonori, Tommaso. Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 785-795. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/

[1] P. Bénilan - L. Boccardo. T. Gallouëtt - R. Gariepy - M. Pierre - J. L. Vazquez, An $L^1$ -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241-273. | fulltext EuDML | MR

[2] P. Bénilan - H. Brezis - M. C. Crandall, A semilinear equation in $L^1(\mathbb{R}^N)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2, no. 4 (1975), 523-555. | fulltext EuDML | MR

[3] L. Boccardo, On the regularizing effect of strongly increasing lower order terms, J. Evol. Equ., 3, no. 2 (2003), 225-236 | DOI | MR | Zbl

[4] L. Boccardo - T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. | DOI | MR

[5] L. Boccardo - F. Murat - J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. | DOI | MR | Zbl

[6] L. Boccardo - F. Murat - J. P. Puel, $L^\infty$ estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23, no. 2 (1992), 326-333. | DOI | MR | Zbl

[7] H. Brezis - W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590. | DOI | MR | Zbl

[8] L. Dupaigne - A. C. Ponce - A. Porretta, Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math., 98 (2006), 349-396. | DOI | MR | Zbl

[9] J. Leray - J. L. Lions, Quelque resultat de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. | fulltext EuDML | MR | Zbl