Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 785-795
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper we prove the existence of a solution for a problem whose model is: \begin{equation*} \begin{cases} -\Delta u + \frac{u}{\sigma - |u|} = \gamma |\nabla u|^{2} + f(x) \text{in } \Omega \\ u = 0 \text{on } \partial \Omega \end{cases} \end{equation*} with $f(x)$ in $L^{1}(\Omega)$ and $\sigma$, $\gamma > 0$.
@article{BUMI_2007_8_10B_3_a22,
author = {Leonori, Tommaso},
title = {Bounded {Solutions} for {Some} {Dirichlet} {Problems} with $L^1(\Omega)$ {Data}},
journal = {Bollettino della Unione matematica italiana},
pages = {785--795},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {3},
year = {2007},
zbl = {1184.35129},
mrnumber = {2507896},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/}
}
TY - JOUR AU - Leonori, Tommaso TI - Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data JO - Bollettino della Unione matematica italiana PY - 2007 SP - 785 EP - 795 VL - 10B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/ LA - en ID - BUMI_2007_8_10B_3_a22 ER -
Leonori, Tommaso. Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 785-795. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a22/