Computation of Biharmonic Poisson Kernel for the Upper Half Plane
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 769-783.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.
Consideriamo innanzitutto il nucleo biarmonico di Poisson per il disco unitario e studiamo il comportamento al bordo dei potenziali associati a questa funzione nucleo. Useremo poi alcune proprietà del nucleo biarmonico di Poisson per il disco unitario per calcolare l'analogo nucleo biarmonico di Poisson per il semipiano superiore.
@article{BUMI_2007_8_10B_3_a21,
     author = {Abkar, Ali},
     title = {Computation of {Biharmonic} {Poisson} {Kernel} for the {Upper} {Half} {Plane}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {769--783},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1182.31001},
     mrnumber = {2507895},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a21/}
}
TY  - JOUR
AU  - Abkar, Ali
TI  - Computation of Biharmonic Poisson Kernel for the Upper Half Plane
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 769
EP  - 783
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a21/
LA  - en
ID  - BUMI_2007_8_10B_3_a21
ER  - 
%0 Journal Article
%A Abkar, Ali
%T Computation of Biharmonic Poisson Kernel for the Upper Half Plane
%J Bollettino della Unione matematica italiana
%D 2007
%P 769-783
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a21/
%G en
%F BUMI_2007_8_10B_3_a21
Abkar, Ali. Computation of Biharmonic Poisson Kernel for the Upper Half Plane. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 769-783. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a21/

[1] A. Abkar, On the mean convergence of biharmonic functions, J. Sci. I.R. Iran, 17 (2006), 337-342. | MR

[2] A. Abkar - H. Hedenmalm, A Riesz representation formula for super-biharmonic functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), 305-324. | fulltext EuDML | MR | Zbl

[3] P. Garabedian, Partial Differential Equations, John Wiley and Sons, Inc., New York-London-Sydney, (1964). | MR | Zbl

[4] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | MR | Zbl

[5] J. B. Garnett - D. E. Marshall, Harmonic measure, Cambridge University Press, London, 2005. | DOI | MR

[6] H. Hedenmalm, A computation of Green function for the weighted biharmonic operators $\Delta |z|^{-2a} \Delta$ con $a > -1$, Duke Math. J. 75, no. 1 (1994) 51-78. | DOI | MR

[7] T. Ransford, Potential theory in the complex plane, Cambridge University Press, London Mathematical Society Student Texts 28, 1995. | DOI | MR | Zbl

[8] W. Rudin, Real and complex analysis, McGraw-Hill Book Company, Singapore, 1986. | MR | Zbl