Porous Medium Type Equations with a Quadratic Gradient Term
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 753-759.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We show an existence result for the Cauchy-Dirichlet problem in $Q_T = \Omega \times (0, T)$ for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation $f$ and the initial datum $u_0$ are bounded nonnegative functions.
In questa nota illustreremo un risultato di esistenza per il problema di Cauchy-Dirichlet in $Q_T = \Omega \times (0, T)$ per equazioni paraboliche con parte principale degenere (del tipo "mezzi porosi") aventi un termine di grado inferiore quadratico nel gradiente. Il termine noto $f$ e il dato iniziale $u_0$ sono funzioni limitate non negative.
@article{BUMI_2007_8_10B_3_a19,
     author = {Giachetti, Daniela and Maroscia, Giulia},
     title = {Porous {Medium} {Type} {Equations} with a {Quadratic} {Gradient} {Term}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {753--759},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1177.35124},
     mrnumber = {2351544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/}
}
TY  - JOUR
AU  - Giachetti, Daniela
AU  - Maroscia, Giulia
TI  - Porous Medium Type Equations with a Quadratic Gradient Term
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 753
EP  - 759
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/
LA  - en
ID  - BUMI_2007_8_10B_3_a19
ER  - 
%0 Journal Article
%A Giachetti, Daniela
%A Maroscia, Giulia
%T Porous Medium Type Equations with a Quadratic Gradient Term
%J Bollettino della Unione matematica italiana
%D 2007
%P 753-759
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/
%G en
%F BUMI_2007_8_10B_3_a19
Giachetti, Daniela; Maroscia, Giulia. Porous Medium Type Equations with a Quadratic Gradient Term. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 753-759. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/

[1] F. Andreu - J. M. Mazon - F. Simondon - J. Toledo, Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source, Math. Ann., 314 (1999), 703-728. | DOI | MR | Zbl

[2] L. Boccardo - F. Murat - J. P. Puel, Existence results for some quasilinear parabolic equations, Nonlinear Anal. T.M.A., 13, 4 (1989), 373-392. | DOI | MR | Zbl

[3] A. Dall'Aglio - D. Giachetti - C. Leone - S. Segura De Leon, Quasi-linear Parabolic Equations With Degenerate Coercivity having a Quadratic Gradient Term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 1 (2006), 97-126. | fulltext EuDML | DOI | MR | Zbl

[4] E. Di Benedetto - J. M. Urbano - V. Vespri, Current issues on singular and degenerate evolution equations, in Evolutionary Equations. Vol. I, Handb. Differ. Equ., 169-286, North-Holland, Amsterdam, The Netherlands (2004). | MR | Zbl

[5] G. Gagneux - M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiqes and Applications, 22, SMAI (1996). | MR | Zbl

[6] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969). | MR | Zbl

[7] G. Maroscia, Boundary value problems for quasilinear degenerate equations modeling fluid flows in porous media, Ph. D. Thesis, Università di Roma ``La Sapienza'' (2006).

[8] M. M. Porzio - V. Vespri, Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, J. Differential Equations, 103, 1 (1993), 146-178. | DOI | MR | Zbl

[9] J. L. Vazquez, The Porous Medium Equation. Mathematical Theory, Oxford Univ. Press (2006). | MR | Zbl