Porous Medium Type Equations with a Quadratic Gradient Term
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 753-759
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We show an existence result for the Cauchy-Dirichlet problem in $Q_T = \Omega \times (0, T)$ for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation $f$ and the initial datum $u_0$ are bounded nonnegative functions.
@article{BUMI_2007_8_10B_3_a19,
author = {Giachetti, Daniela and Maroscia, Giulia},
title = {Porous {Medium} {Type} {Equations} with a {Quadratic} {Gradient} {Term}},
journal = {Bollettino della Unione matematica italiana},
pages = {753--759},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {3},
year = {2007},
zbl = {1177.35124},
mrnumber = {2351544},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/}
}
TY - JOUR AU - Giachetti, Daniela AU - Maroscia, Giulia TI - Porous Medium Type Equations with a Quadratic Gradient Term JO - Bollettino della Unione matematica italiana PY - 2007 SP - 753 EP - 759 VL - 10B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/ LA - en ID - BUMI_2007_8_10B_3_a19 ER -
%0 Journal Article %A Giachetti, Daniela %A Maroscia, Giulia %T Porous Medium Type Equations with a Quadratic Gradient Term %J Bollettino della Unione matematica italiana %D 2007 %P 753-759 %V 10B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/ %G en %F BUMI_2007_8_10B_3_a19
Giachetti, Daniela; Maroscia, Giulia. Porous Medium Type Equations with a Quadratic Gradient Term. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 753-759. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/