Porous Medium Type Equations with a Quadratic Gradient Term
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 753-759

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We show an existence result for the Cauchy-Dirichlet problem in $Q_T = \Omega \times (0, T)$ for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation $f$ and the initial datum $u_0$ are bounded nonnegative functions.
@article{BUMI_2007_8_10B_3_a19,
     author = {Giachetti, Daniela and Maroscia, Giulia},
     title = {Porous {Medium} {Type} {Equations} with a {Quadratic} {Gradient} {Term}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {753--759},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1177.35124},
     mrnumber = {2351544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/}
}
TY  - JOUR
AU  - Giachetti, Daniela
AU  - Maroscia, Giulia
TI  - Porous Medium Type Equations with a Quadratic Gradient Term
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 753
EP  - 759
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/
LA  - en
ID  - BUMI_2007_8_10B_3_a19
ER  - 
%0 Journal Article
%A Giachetti, Daniela
%A Maroscia, Giulia
%T Porous Medium Type Equations with a Quadratic Gradient Term
%J Bollettino della Unione matematica italiana
%D 2007
%P 753-759
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/
%G en
%F BUMI_2007_8_10B_3_a19
Giachetti, Daniela; Maroscia, Giulia. Porous Medium Type Equations with a Quadratic Gradient Term. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 753-759. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a19/