A-Statistical Convergence of Subsequence of Double Sequences
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 727-739.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The concept of statistical convergence of a sequence was first introduced by H. Fast [7] in 1951. Recently, in the literature, the concept of statistical convergence of double sequences has been studied. The main result in this paper is a theorem that gives meaning to the statement: $s={s_{ij}}$ converges statistically $A$ to $L$ if and only if "most" of the "subsequences" of $s$ converge to $L$ in the ordinary sense. The results presented here are analogue of theorems in [12], [13] and [6] and are concerned with $A$ statistical convergence, first introduced by Freedman and Sember [8]. Other related problems are considered.
Il concetto di convergenza statistica di una successione fu introdotto per la prima volta da H. Fast [7] nel 1951. Recentemente, nella letteratura è stato studiato il concetto di convergenza statistica di successioni doppie. Il risultato principale di questo lavoro è un teorema che dà significato all'affermazione: $s={s_{ij}}$ converge $A$ statisticamente a $L$ se e solo se "la maggior parte" delle "sottosuccessioni" di $s$ convergono a $L$ nel senso ordinario. I risultati presentati qui sono l'analogo dei teoremi di [12], [13] e [6] e riguardano la convergenza $A$ statistica introdotta per la prima volta da Freedman e Sember [8]. Vengono anche presi in considerazione altri problemi correlati.
@article{BUMI_2007_8_10B_3_a17,
     author = {Miller, Harry I.},
     title = {A-Statistical {Convergence} of {Subsequence} of {Double} {Sequences}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {727--739},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1139.40001},
     mrnumber = {2351542},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a17/}
}
TY  - JOUR
AU  - Miller, Harry I.
TI  - A-Statistical Convergence of Subsequence of Double Sequences
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 727
EP  - 739
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a17/
LA  - en
ID  - BUMI_2007_8_10B_3_a17
ER  - 
%0 Journal Article
%A Miller, Harry I.
%T A-Statistical Convergence of Subsequence of Double Sequences
%J Bollettino della Unione matematica italiana
%D 2007
%P 727-739
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a17/
%G en
%F BUMI_2007_8_10B_3_a17
Miller, Harry I. A-Statistical Convergence of Subsequence of Double Sequences. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 727-739. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a17/

[1] P. Billingsley, Probability and Measure, Third Edition, Wiley and Sons, 1995. | MR

[2] R. C. Buck, Generalized asymptotic density, Amer. J. Math., 74 (1953), 334-346. | DOI | MR | Zbl

[3] J. Connor, The statistical and strong p-Cesáro convergence of sequences, Analysis, 8 (1988), 47-63. | MR | Zbl

[4] J. Connor, Almost none of the sequences of 0's and 1's are almost convergent, Int. J. Math. Math. Sci., 13 (1990), 775-778. | fulltext EuDML | DOI | MR | Zbl

[5] J. Connor, Two valued measure and summability, Analysis, 10 (1990), 373-385. | DOI | MR | Zbl

[6] M. Crnjac - F. Cunjalo - H. I. Miller, Subsequence characterizations of statistical convergence of double sequences, Rad. Mat., 12 (2) (2004), 163-175. | MR | Zbl

[7] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. | fulltext EuDML | MR | Zbl

[8] A. R. Freedman - J. J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293-305. | MR | Zbl

[9] J. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313. | DOI | MR | Zbl

[10] J. Fridy - C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43-51. | MR | Zbl

[11] J. Fridy - C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173 (1993). | DOI | MR | Zbl

[12] H. I. Miller, Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (5) (1995), 1811-1819. | DOI | MR | Zbl

[13] H. I. Miller - C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hung., 93 (1-2) (2001), 135-151. | DOI | MR | Zbl

[14] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2003), 82-89. | DOI | MR