On the Dirichlet Problem with Orlicz Boundary Data
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 661-679

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let us consider a Young's function $\Phi \colon \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the $\Delta_2$ condition together with its complementary function $\Psi$, and let us consider the Dirichlet problem for a second order elliptic operator in divergence form: \begin{equation*} \begin{cases} Lu=0 \text{in } B\\ u_{|\partial B}=f \end{cases} \end{equation*}$B$ the unit ball of $\mathbb{R}^n$. In this paper we give a necessary and sufficient condition for the $L^\phi$-solvability of the problem, where $L^\phi$ is the Orlicz Space generated by the function $\Phi$. This means solvability for $f \in L^\Phi$ in the sense of [5], [8], where the case $\Phi(t) = t^p$ is treated.
@article{BUMI_2007_8_10B_3_a12,
     author = {Zecca, Gabriella},
     title = {On the {Dirichlet} {Problem} with {Orlicz} {Boundary} {Data}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {661--679},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1177.35060},
     mrnumber = {2351536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a12/}
}
TY  - JOUR
AU  - Zecca, Gabriella
TI  - On the Dirichlet Problem with Orlicz Boundary Data
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 661
EP  - 679
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a12/
LA  - en
ID  - BUMI_2007_8_10B_3_a12
ER  - 
%0 Journal Article
%A Zecca, Gabriella
%T On the Dirichlet Problem with Orlicz Boundary Data
%J Bollettino della Unione matematica italiana
%D 2007
%P 661-679
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a12/
%G en
%F BUMI_2007_8_10B_3_a12
Zecca, Gabriella. On the Dirichlet Problem with Orlicz Boundary Data. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 661-679. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a12/