On the Dirichlet Problem with Orlicz Boundary Data
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 661-679
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let us consider a Young's function $\Phi \colon \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the $\Delta_2$ condition together with its complementary function $\Psi$, and let us consider the Dirichlet problem for a second order elliptic operator in divergence form: \begin{equation*} \begin{cases} Lu=0 \text{in } B\\ u_{|\partial B}=f \end{cases} \end{equation*}$B$ the unit ball of $\mathbb{R}^n$. In this paper we give a necessary and sufficient condition for the $L^\phi$-solvability of the problem, where $L^\phi$ is the Orlicz Space generated by the function $\Phi$. This means solvability for $f \in L^\Phi$ in the sense of [5], [8], where the case $\Phi(t) = t^p$ is treated.
@article{BUMI_2007_8_10B_3_a12,
author = {Zecca, Gabriella},
title = {On the {Dirichlet} {Problem} with {Orlicz} {Boundary} {Data}},
journal = {Bollettino della Unione matematica italiana},
pages = {661--679},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {3},
year = {2007},
zbl = {1177.35060},
mrnumber = {2351536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a12/}
}
Zecca, Gabriella. On the Dirichlet Problem with Orlicz Boundary Data. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 661-679. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a12/