A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 341-356.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator \begin{equation*}\tag{*} Lu = - \sum^n_{i,j=1} (a_{ij}(x)u_{x_i} + d_j u)_{x_j} + \sum^n_{i=1} b_i u_{x_i} + cu\end{equation*} assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight $w$, which gives the degeneration, belongs to the Muckenoupt class $A^2$.
In questa nota si studia un problema di esistenza e unicità di soluzioni di una disuguaglianza variazionale associata al seguente operatore degenere \begin{equation*}\tag{*} Lu = - \sum^n_{i,j=1} (a_{ij}(x)u_{x_i} + d_j u)_{x_j} + \sum^n_{i=1} b_i u_{x_i} + cu\end{equation*}. I coefficienti dei termini di ordine inferiore e del termine noto di (*) appartengono ad una generalizzazione degenere del classico spazio di Stummel-Kato. Il peso $w$, che fornisce la degenerazione, appartiene alla classe $A_2$ di Muckenoupt.
@article{BUMI_2007_8_10B_2_a4,
     author = {Vitanza, Carmela and Zamboni, Pietro},
     title = {A {Variational} {Inequality} for a {Degenerate} {Elliptic} {Operator} {Under} {Minimal} {Assumptions} on the {Coefficients}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {341--356},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1178.49012},
     mrnumber = {2339445},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/}
}
TY  - JOUR
AU  - Vitanza, Carmela
AU  - Zamboni, Pietro
TI  - A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 341
EP  - 356
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/
LA  - en
ID  - BUMI_2007_8_10B_2_a4
ER  - 
%0 Journal Article
%A Vitanza, Carmela
%A Zamboni, Pietro
%T A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
%J Bollettino della Unione matematica italiana
%D 2007
%P 341-356
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/
%G en
%F BUMI_2007_8_10B_2_a4
Vitanza, Carmela; Zamboni, Pietro. A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 341-356. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/

[1] M. Aizenman - B. Simon, Brownian motion and Harnack inequality for Schrodinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273. | DOI | MR | Zbl

[2] F. Chiarenza, Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. | DOI | MR | Zbl

[3] F. Chiarenza - E. Fabes - N. Garofalo, Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. | DOI | MR | Zbl

[4] F. Chiarenza - M. Frasca, Una disequazione variazionale associata a un operatore ellittico con degenerazione di tipo $A_2$, Le Matematiche, 37 (1982), 239-250

[5] E. Fabes - D. Jerison - C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-182. | fulltext EuDML | MR | Zbl

[6] E. Fabes - C. Kenig - R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E., 7 (1982), 77-116. | DOI | MR | Zbl

[7] J. Garcia Cuerva - J. L. Rubio De Francia, Weighted norm inequalities and related topics (North-Holland, Amsterdam, 1985). | MR

[8] C. Gutierrez, Harnack's inequality for degenerate Schrödinger operators, Trans. A.M.S., 312 (1989), 403-419. | DOI | MR | Zbl

[9] O. Ladyzhenskaya - N. Ural'Tseva, Linear and quasilinear elliptic equations (Accad. Press 1968). | MR

[10] J. L. Lions - G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519. | DOI | MR

[11] M. E. Marina, Una diseguaglianza variazionale associata a un operatore ellittico che puo degenerare e con condizioni al contorno di tipo misto, Rend. Sem. Mat. Padova, 54 (1975), 107-121. | fulltext EuDML | MR | Zbl

[12] B. Muckenoupt, Weigthed norm inequalities for the Hardy maximal functions, Trans. A.M.S., 165 (1972), 207-226. | DOI | MR

[13] K.V. Murthy - G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pure Appl., 80 (1968), 1-122. | DOI | MR | Zbl

[14] C. Simader, An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), 129-152. | fulltext EuDML | DOI | MR | Zbl

[15] G. Stampacchia, Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier Grenoble, 15 (1965), 198-258. | fulltext EuDML | MR | Zbl

[16] C. Vitanza - P. Zamboni, Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger perators, Le Matematiche, 52 (1997), 393-409. | MR

[17] P. Zamboni, The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. | DOI | MR | Zbl

[18] P. Zamboni, Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. of Differential equations, 182 (2002), 121-140. | DOI | MR | Zbl