A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 341-356
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator \begin{equation*}\tag{*} Lu = - \sum^n_{i,j=1} (a_{ij}(x)u_{x_i} + d_j u)_{x_j} + \sum^n_{i=1} b_i u_{x_i} + cu\end{equation*} assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight $w$, which gives the degeneration, belongs to the Muckenoupt class $A^2$.
@article{BUMI_2007_8_10B_2_a4,
author = {Vitanza, Carmela and Zamboni, Pietro},
title = {A {Variational} {Inequality} for a {Degenerate} {Elliptic} {Operator} {Under} {Minimal} {Assumptions} on the {Coefficients}},
journal = {Bollettino della Unione matematica italiana},
pages = {341--356},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {2},
year = {2007},
zbl = {1178.49012},
mrnumber = {2339445},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/}
}
TY - JOUR AU - Vitanza, Carmela AU - Zamboni, Pietro TI - A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients JO - Bollettino della Unione matematica italiana PY - 2007 SP - 341 EP - 356 VL - 10B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/ LA - en ID - BUMI_2007_8_10B_2_a4 ER -
%0 Journal Article %A Vitanza, Carmela %A Zamboni, Pietro %T A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients %J Bollettino della Unione matematica italiana %D 2007 %P 341-356 %V 10B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/ %G en %F BUMI_2007_8_10B_2_a4
Vitanza, Carmela; Zamboni, Pietro. A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 341-356. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a4/