Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 317-340.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case $1 q 2$.
Si dimostra l'hölderianità di equazioni degenerate, che descrivono il moto di un fluido incomprimibile non- newtoniano in due dimensioni, sotto condizioni usuali di monotonia e di andamento all'infinito di ordine $q - 1$ ($1 q 2$).
@article{BUMI_2007_8_10B_2_a3,
     author = {Wolf, Jorg},
     title = {Interior $C^{1,\alpha}${-Regularity} of {Weak} {Solutions} to the {Equations} of {Stationary} {Motions} of {Certain} {Non-Newtonian} {Fluids} in {Two} {Dimensions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {317--340},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1140.76007},
     mrnumber = {2339444},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/}
}
TY  - JOUR
AU  - Wolf, Jorg
TI  - Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 317
EP  - 340
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/
LA  - en
ID  - BUMI_2007_8_10B_2_a3
ER  - 
%0 Journal Article
%A Wolf, Jorg
%T Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
%J Bollettino della Unione matematica italiana
%D 2007
%P 317-340
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/
%G en
%F BUMI_2007_8_10B_2_a3
Wolf, Jorg. Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 317-340. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/

[1] ADAMS, R. A., Sobolev spaces. Academic Press, Boston 1978. | MR

[2] Astarita, G. - Marrucci, G. Principles of non-Newtonian fluid mechanics. Mc Graw-Hill, London, New York 1974. | Zbl

[3] Batchelor, G. K., An introduction to fluid mechanics. Cambridge Univ. Press, Cambridge 1967. | MR | Zbl

[4] Bird, R. B. - Armstrong, R. C., Hassager, O.: Dynamics of polymer liquids. Vol. 1: Fluid mechanics. 2nd ed., J. Wiley and Sons, New York 1987. | MR

[5] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer-Verlag, New York 1994. | DOI | MR | Zbl

[6] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J. (1983). | MR | Zbl

[7] Giaquinta, M. - Modica, G., Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math. 28 (1979), 109-158. | fulltext EuDML | DOI | MR | Zbl

[8] Gehring, F. W., $L^p$integrability of the partial derivatives of a quasi conformal mapping. Acta. Math. 130 (1973), 265- 277. | DOI | MR | Zbl

[9] Kaplický, P. - Málek, J. - Stará, J., $C^{1, \alpha}$-solutions to a class of nonlinear fluids in two dimensionsÀstationary Dirichlet problem. Zap. Nauchn. Sem. St. Petersburg Odtel. Mat. Inst. Steklov (POMI) 259 (1999), 89-121. | DOI | MR | Zbl

[10] Lamb, H., Hydrodynamics. 6th ed., Cambridge Univ. Press 1945. | MR

[11] Naumann, J., On the differentiability of weak solutions of a degenerate system of PDE's in fluid mechanics. Annali Mat. pura appl. (IV) 151 (1988), 225-238. | DOI | MR | Zbl

[12] Naumann, J. - Wolf, J., On the interior regularity of weak solutions of degenerate elliptic system (the case $1 < p < 2$). Rend. Sem. Mat. Univ. Padova 88 (1992), 55- 81. | fulltext EuDML | MR | Zbl

[13] Naumann, J. - Wolf, J., Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids J. Math. Fluid Mech., 7 (2005), 298-313. | DOI | MR | Zbl

[14] Wilkinson, W. L., Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer. Pergamon Press, London, New York 1960. | MR | Zbl