Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_2_a3, author = {Wolf, Jorg}, title = {Interior $C^{1,\alpha}${-Regularity} of {Weak} {Solutions} to the {Equations} of {Stationary} {Motions} of {Certain} {Non-Newtonian} {Fluids} in {Two} {Dimensions}}, journal = {Bollettino della Unione matematica italiana}, pages = {317--340}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {2}, year = {2007}, zbl = {1140.76007}, mrnumber = {2339444}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/} }
TY - JOUR AU - Wolf, Jorg TI - Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions JO - Bollettino della Unione matematica italiana PY - 2007 SP - 317 EP - 340 VL - 10B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/ LA - en ID - BUMI_2007_8_10B_2_a3 ER -
%0 Journal Article %A Wolf, Jorg %T Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions %J Bollettino della Unione matematica italiana %D 2007 %P 317-340 %V 10B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/ %G en %F BUMI_2007_8_10B_2_a3
Wolf, Jorg. Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 317-340. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/
[1] ADAMS, Sobolev spaces. Academic Press, Boston 1978. | MR
.,[2] Principles of non-Newtonian fluid mechanics. Mc Graw-Hill, London, New York 1974. | Zbl
-[3] An introduction to fluid mechanics. Cambridge Univ. Press, Cambridge 1967. | MR | Zbl
,[4] Dynamics of polymer liquids. Vol. 1: Fluid mechanics. 2nd ed., J. Wiley and Sons, New York 1987. | MR
- , :[5] An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer-Verlag, New York 1994. | DOI | MR | Zbl
,[6] Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J. (1983). | MR | Zbl
,[7] Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math. 28 (1979), 109-158. | fulltext EuDML | DOI | MR | Zbl
- ,[8] $L^p$integrability of the partial derivatives of a quasi conformal mapping. Acta. Math. 130 (1973), 265- 277. | DOI | MR | Zbl
,[9] $C^{1, \alpha}$-solutions to a class of nonlinear fluids in two dimensionsÀstationary Dirichlet problem. Zap. Nauchn. Sem. St. Petersburg Odtel. Mat. Inst. Steklov (POMI) 259 (1999), 89-121. | DOI | MR | Zbl
- - ,[10] Hydrodynamics. 6th ed., Cambridge Univ. Press 1945. | MR
,[11] On the differentiability of weak solutions of a degenerate system of PDE's in fluid mechanics. Annali Mat. pura appl. (IV) 151 (1988), 225-238. | DOI | MR | Zbl
,[12] On the interior regularity of weak solutions of degenerate elliptic system (the case $1 < p < 2$). Rend. Sem. Mat. Univ. Padova 88 (1992), 55- 81. | fulltext EuDML | MR | Zbl
- ,[13] Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids J. Math. Fluid Mech., 7 (2005), 298-313. | DOI | MR | Zbl
- ,[14] Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer. Pergamon Press, London, New York 1960. | MR | Zbl
,