Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 317-340

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case $1 q 2$.
@article{BUMI_2007_8_10B_2_a3,
     author = {Wolf, Jorg},
     title = {Interior $C^{1,\alpha}${-Regularity} of {Weak} {Solutions} to the {Equations} of {Stationary} {Motions} of {Certain} {Non-Newtonian} {Fluids} in {Two} {Dimensions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {317--340},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1140.76007},
     mrnumber = {2339444},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/}
}
TY  - JOUR
AU  - Wolf, Jorg
TI  - Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 317
EP  - 340
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/
LA  - en
ID  - BUMI_2007_8_10B_2_a3
ER  - 
%0 Journal Article
%A Wolf, Jorg
%T Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
%J Bollettino della Unione matematica italiana
%D 2007
%P 317-340
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/
%G en
%F BUMI_2007_8_10B_2_a3
Wolf, Jorg. Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 317-340. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a3/