Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 277-292.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this work, recent results concerning the long time asymptotics of one- dimensional scalar conservation laws with probability densities as initial data are reviewed and further applied to the case of viscous conservation laws with nonlinear degenerate diffusions. The non-strict contraction of the maximal transport distance together with a uniform expansion of the solutions lead to the existence of time-de- pendent asymptotic profiles for a large class of convection-diffusion problems with fully general nonlinearities and with degenerate diffusion.
In questo articolo sono riportati alcuni risultati recenti riguardo il comportamento asintotico nel tempo di leggi di conservazione scalari in una dimensione spaziale e con densità di probabilità come dati iniziali. Tali risultati sono quindi applicati al caso di leggi di conservazione viscose con diffusioni nonlineari degeneri. Le proprietà di contrazione nella distanza di trasporto massimale e di uniforme espansione delle soluzioni forniscono l'esistenza di profili asintotici dipendenti dal tempo per un'ampia classe di equazioni di convenzione-diffusione con nonlinearità arbitrarie e diffusione degenere.
@article{BUMI_2007_8_10B_2_a1,
     author = {Carrillo, Jos\'e A. and Di Francesco, Marco and Lattanzio, Corrado},
     title = {Contractivity and {Asymptotics} in {Wasserstein} {Metrics} for {Viscous} {Nonlinear} {Scalar} {Conservation} {Laws}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1178.35390},
     mrnumber = {2339442},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/}
}
TY  - JOUR
AU  - Carrillo, José A.
AU  - Di Francesco, Marco
AU  - Lattanzio, Corrado
TI  - Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 277
EP  - 292
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/
LA  - en
ID  - BUMI_2007_8_10B_2_a1
ER  - 
%0 Journal Article
%A Carrillo, José A.
%A Di Francesco, Marco
%A Lattanzio, Corrado
%T Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws
%J Bollettino della Unione matematica italiana
%D 2007
%P 277-292
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/
%G en
%F BUMI_2007_8_10B_2_a1
Carrillo, José A.; Di Francesco, Marco; Lattanzio, Corrado. Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 277-292. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/

[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory, Adv. Differential Equations, 10 (2005), 309-360. | MR | Zbl

[2] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2005. | MR

[3] D. Andreucci, Degenerate parabolic equations with initial data measures, Trans. Amer. Math. Soc., 349 (10) (1997), 3911-3923. | DOI | MR | Zbl

[4] P. Bénilan - J. E. Bouillet, On a parabolic equation with slow and fast diffusions, Nonlinear Anal., 26 (4) (1996), 813-822. | DOI | MR | Zbl

[5] F. Bolley - Y. Brenier - G. Loeper, Contractive metrics for scalar conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 91-107. | DOI | MR | Zbl

[6] F. Bolley - J. A. Carrillo, Tanaka Theorem for Inelastic Maxwell Models, To appear in Comm. Math. Phys. | DOI | MR

[7] Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., 52 (1999), 411-452, 1999. | DOI | MR | Zbl

[8] Y. Brenier, $L^2$ formulation of multidimensional scalar conservation laws, to appear in Arch. Ration. Mech. Anal. | DOI | MR | Zbl

[9] E. Carlen - W. Gangbo, Constrained steepest descent in the 2-Wasserstein metric, Ann. of Math., 157 (2003), 807-846. | DOI | MR | Zbl

[10] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), 269-361. | DOI | MR | Zbl

[11] J. A. Carrillo - M. Di Francesco - M. P. Gualdani, Semidiscretization and long- time asymptotics of nonlinear diffusion equations, Comm. Math. Sci., 1 (2007), 21-53. | DOI | MR | Zbl

[12] J. A. Carrillo - M. Di Francesco - C. Lattanzio, Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws, J. Differential Equations, 231 (2006), 425-458. | DOI | MR | Zbl

[13] J. A. Carrillo - M. Di Francesco - G. Toscani, Intermediate asymptotics beyond homogeneity and self-similarity: long time behavior for $u_t = \Delta \phi (u)$, Arch. Rational Mech. Anal., 180 (2006), 127-149. | DOI | MR | Zbl

[14] J. A. Carrillo - M. P. Gualdani - G. Toscan, Finite speed of propagation in porous media by mass transportation methods, C. R. Acad. Sci. Paris, 338 (2004), 815-818. | DOI | MR

[15] J. A. Carrillo, R. J. Mccann - C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rational Mech. Anal., 179 (2006), 217-264. | DOI | MR | Zbl

[16] J. A. Carrillo - G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations, In New trends in mathematical physics, World Sci. Publ., Hackensack, NJ, 2004, 234-244. | MR | Zbl

[17] J. A. Carrillo - J. L. Vázquez, Asymptotic Complexity in Filtration Equations, To appear in J. Evol. Equ. | DOI | MR

[18] M. Crandall - M. Pierre, Regularizing effects for $u_t +A\phi (u)=0$ in $L^1$, J. Funct. Anal., 45 (1982), 194-212. | DOI | MR | Zbl

[19] M. Cullen - W. Gangbo, A variational approach for the 2-dimensional semi- geostrophic shallow water equations, Arch. Ration. Mech. Anal., 156 (2001) 241-273. | DOI | MR | Zbl

[20] M. Di Francesco - P. A. Markowich, Entropy dissipation and Wasserstein metric methods for the viscous Burgers' equation: convergence to diffusive waves, In Partial Differential Equations and Inverse Problems, 362 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, 145-165. | DOI | MR | Zbl

[21] M. Di Francesco - M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, to appear in Monat. Math. | DOI | MR | Zbl

[22] S. Evje - K. H. Karlsen, Viscous splitting approximation of mixed hyperbolic- parabolic convection-diffusion equations, Numer. Math., 83 (1) (1999), 107-137. | DOI | MR | Zbl

[23] M. Escobedo - J. L. Vázquez - E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal., 124 (1) (1993), 43-65. | DOI | MR

[24] E. Hopf, The partial differential equation $u_t + uu_x = \mu u_{xx}$, Comm. Pure Appl. Math., 3 (1950), 201-230. | DOI | MR | Zbl

[25] A. S. Kalashnikov, Some problems of the qualitative theory of second-order non-linear degenerate parabolic equations, Uspekhi Mat. Nauk, 42 (2(254)) (1987), 135- 176, 287. | MR

[26] P. Laurençot - F. Simondon, Long-time behaviour for porous medium equations with convection, Proc. Roy. Soc. Edinburgh Sect. A, 128 (2) (1998), 315-336. | DOI | MR | Zbl

[27] T. P. Liu - M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441. | DOI | MR | Zbl

[28] J. Lott - C. Villani, Ricci curvature for metric-measure spaces via optimal transport, To appear in Ann. of Math. | DOI | MR | Zbl

[29] R. J. Mccann, Stable rotating binary stars and fluid in a tube, Houston J. Math., 32 (2006), 603-632. | MR | Zbl

[30] F. Otto, The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. | DOI | MR | Zbl

[31] F. Otto - M. Westdickenberg, Eulerian calculus for the contraction in the wasserstein distance, SIAM J. Math. Anal., 37 (2005), 1227-1255. | DOI | MR | Zbl

[32] K. T. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl., 84 (2005) 149-168. | DOI | MR | Zbl

[33] G. Toscani, A central limit theorem for solutions of the porous medium equation, J. Evol. Equ., 5 (2005), 185-203. | DOI | MR | Zbl

[34] J. L. Vázquez, The Porous Medium Equation. New contractivity results, Progress in Nonlinear Differential Equations and Their Applications, 63 (205) (Volume in honor of H. Brezis, Proceedings of Gaeta Congress, June 2004), 433-451. | DOI | MR

[35] C. Villani, Topics in optimal transportation, 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. | DOI | MR

[36] C. Villani, Optimal transport, old and new, Lecture Notes for the 2005 Saint-Flour summer school, to appear in Springer 2007. | DOI | MR