Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_2_a1, author = {Carrillo, Jos\'e A. and Di Francesco, Marco and Lattanzio, Corrado}, title = {Contractivity and {Asymptotics} in {Wasserstein} {Metrics} for {Viscous} {Nonlinear} {Scalar} {Conservation} {Laws}}, journal = {Bollettino della Unione matematica italiana}, pages = {277--292}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {2}, year = {2007}, zbl = {1178.35390}, mrnumber = {2339442}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/} }
TY - JOUR AU - Carrillo, José A. AU - Di Francesco, Marco AU - Lattanzio, Corrado TI - Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws JO - Bollettino della Unione matematica italiana PY - 2007 SP - 277 EP - 292 VL - 10B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/ LA - en ID - BUMI_2007_8_10B_2_a1 ER -
%0 Journal Article %A Carrillo, José A. %A Di Francesco, Marco %A Lattanzio, Corrado %T Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws %J Bollettino della Unione matematica italiana %D 2007 %P 277-292 %V 10B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/ %G en %F BUMI_2007_8_10B_2_a1
Carrillo, José A.; Di Francesco, Marco; Lattanzio, Corrado. Contractivity and Asymptotics in Wasserstein Metrics for Viscous Nonlinear Scalar Conservation Laws. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 277-292. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a1/
[1] Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory, Adv. Differential Equations, 10 (2005), 309-360. | MR | Zbl
,[2] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2005. | MR
- - ,[3] Degenerate parabolic equations with initial data measures, Trans. Amer. Math. Soc., 349 (10) (1997), 3911-3923. | DOI | MR | Zbl
,[4] On a parabolic equation with slow and fast diffusions, Nonlinear Anal., 26 (4) (1996), 813-822. | DOI | MR | Zbl
- ,[5] Contractive metrics for scalar conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 91-107. | DOI | MR | Zbl
- - ,[6] Tanaka Theorem for Inelastic Maxwell Models, To appear in Comm. Math. Phys. | DOI | MR
- ,[7] Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., 52 (1999), 411-452, 1999. | DOI | MR | Zbl
,[8] $L^2$ formulation of multidimensional scalar conservation laws, to appear in Arch. Ration. Mech. Anal. | DOI | MR | Zbl
,[9] Constrained steepest descent in the 2-Wasserstein metric, Ann. of Math., 157 (2003), 807-846. | DOI | MR | Zbl
- ,[10] Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), 269-361. | DOI | MR | Zbl
,[11] Semidiscretization and long- time asymptotics of nonlinear diffusion equations, Comm. Math. Sci., 1 (2007), 21-53. | DOI | MR | Zbl
- - ,[12] Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws, J. Differential Equations, 231 (2006), 425-458. | DOI | MR | Zbl
- - ,[13] Intermediate asymptotics beyond homogeneity and self-similarity: long time behavior for $u_t = \Delta \phi (u)$, Arch. Rational Mech. Anal., 180 (2006), 127-149. | DOI | MR | Zbl
- - ,[14] Finite speed of propagation in porous media by mass transportation methods, C. R. Acad. Sci. Paris, 338 (2004), 815-818. | DOI | MR
- - ,[15] Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rational Mech. Anal., 179 (2006), 217-264. | DOI | MR | Zbl
, - ,[16] Wasserstein metric and large-time asymptotics of nonlinear diffusion equations, In New trends in mathematical physics, World Sci. Publ., Hackensack, NJ, 2004, 234-244. | MR | Zbl
- ,[17] Asymptotic Complexity in Filtration Equations, To appear in J. Evol. Equ. | DOI | MR
- ,[18] Regularizing effects for $u_t +A\phi (u)=0$ in $L^1$, J. Funct. Anal., 45 (1982), 194-212. | DOI | MR | Zbl
- ,[19] A variational approach for the 2-dimensional semi- geostrophic shallow water equations, Arch. Ration. Mech. Anal., 156 (2001) 241-273. | DOI | MR | Zbl
- ,[20] Entropy dissipation and Wasserstein metric methods for the viscous Burgers' equation: convergence to diffusive waves, In Partial Differential Equations and Inverse Problems, 362 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, 145-165. | DOI | MR | Zbl
- ,[21] Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, to appear in Monat. Math. | DOI | MR | Zbl
- ,[22] Viscous splitting approximation of mixed hyperbolic- parabolic convection-diffusion equations, Numer. Math., 83 (1) (1999), 107-137. | DOI | MR | Zbl
- ,[23] Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal., 124 (1) (1993), 43-65. | DOI | MR
- - ,[24] The partial differential equation $u_t + uu_x = \mu u_{xx}$, Comm. Pure Appl. Math., 3 (1950), 201-230. | DOI | MR | Zbl
,[25] Some problems of the qualitative theory of second-order non-linear degenerate parabolic equations, Uspekhi Mat. Nauk, 42 (2(254)) (1987), 135- 176, 287. | MR
,[26] Long-time behaviour for porous medium equations with convection, Proc. Roy. Soc. Edinburgh Sect. A, 128 (2) (1998), 315-336. | DOI | MR | Zbl
- ,[27] Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations, 51 (1984), 419-441. | DOI | MR | Zbl
- ,[28] Ricci curvature for metric-measure spaces via optimal transport, To appear in Ann. of Math. | DOI | MR | Zbl
- ,[29] Stable rotating binary stars and fluid in a tube, Houston J. Math., 32 (2006), 603-632. | MR | Zbl
,[30] The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. | DOI | MR | Zbl
,[31] Eulerian calculus for the contraction in the wasserstein distance, SIAM J. Math. Anal., 37 (2005), 1227-1255. | DOI | MR | Zbl
- ,[32] Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl., 84 (2005) 149-168. | DOI | MR | Zbl
,[33] A central limit theorem for solutions of the porous medium equation, J. Evol. Equ., 5 (2005), 185-203. | DOI | MR | Zbl
,[34] The Porous Medium Equation. New contractivity results, Progress in Nonlinear Differential Equations and Their Applications, 63 (205) (Volume in honor of H. Brezis, Proceedings of Gaeta Congress, June 2004), 433-451. | DOI | MR
,[35] Topics in optimal transportation, 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. | DOI | MR
,[36] Optimal transport, old and new, Lecture Notes for the 2005 Saint-Flour summer school, to appear in Springer 2007. | DOI | MR
,