Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_2_a0, author = {Villani, C\'edric}, title = {Hypocoercive {Diffusion} {Operators}}, journal = {Bollettino della Unione matematica italiana}, pages = {257--275}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {2}, year = {2007}, zbl = {1178.35306}, mrnumber = {2339441}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a0/} }
Villani, Cédric. Hypocoercive Diffusion Operators. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 257-275. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a0/
[1] Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles, Comm. Partial Differential Equations 28 (5-6) (2003), 969-989. | DOI | MR
- - ,[2] Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana 19 (3) (2003), 971-1018. | fulltext EuDML | DOI | MR | Zbl
- - ,[3] On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54 (1) (2001), 1-42. | DOI | MR | Zbl
- ,[4] On a variant of Korn's inequality arising in statistical mechanics, ESAIM Control Optim. Calc. Var. 8 (2002), 603-619. | fulltext EuDML | DOI | MR | Zbl
- ,[5] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math. 159 (2) (2005), 245-316. | DOI | MR | Zbl
- ,[6] Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Comm. Math. Phys. 212 (1) (2000), 105-164. | DOI | MR | Zbl
- ,[7] Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235 (2) (2003), 233-253. | DOI | MR | Zbl
- ,[8] Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different tempera- tures, Comm. Math. Phys. 201 (3) (1999), 657-697. | DOI | MR | Zbl
- - ,[9] Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatsh. Math. 141 (4) (2004), 289-299. | DOI | MR | Zbl
- - ,[10] Solving the Boltzmann equation in $N \log_2 N$, SIAM J. Sci. Comput., to appear. | DOI | MR
- - ,[11] Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (1) (2005), 97-129. | DOI | MR | Zbl
- ,[12] The Landau equation in a periodic box, Comm. Math. Phys. 231 (3) (2002), 391-434. | DOI | MR | Zbl
,[13] Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, to appear. | DOI | MR | Zbl
- ,[14] Exponential decay for soft potentials near Maxwellian, is to appear in Arch. Rational Mech. Anal. | DOI | MR | Zbl
- ,[15] Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math, to appear. | DOI | MR | Zbl
- ,[16] Hypoellipticity and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Math. 1862, Springer-Verlag, Berlin 2005. | DOI | MR | Zbl
- ,[17] Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., to appear; http://helios.univ-reims.fr/Labos/Mathematiques/Homepages/Herau/. | MR
,[18] Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, Preprint (revised version), 2005; http://helios.univ-reims.fr/Labos/Mathematiques/Homepages/Herau/. | DOI | MR
,[19] Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2) (2004) | DOI | MR
- ,[20] Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | DOI | MR
,[21] Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, appeared in Nonlinearity, 19 (4) (2006), 969-998. | DOI | MR | Zbl
- ,[22] Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators, Comm. Math. Phys. 215 (1) (2000), 1-24. | DOI | MR | Zbl
- ,[23] Exponential convergence to non-equilibrium stationary states in classical statistical mechanics, Comm. Math. Phys. 225 (2) (2002), 305-329. | DOI | MR | Zbl
- ,[24] Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields 8 (2) (2002), 163-198. | MR | Zbl
,[25] Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys. 203 (3) (1999), 667-706. | DOI | MR | Zbl
- ,[26] On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys. 98 (5-6) (2000), 1279-1309. | DOI | MR | Zbl
- ,[27] A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam 2002, 71-305. | DOI | MR | Zbl
,[28] Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys. 234 (3) (2003), 455-490. | DOI | MR | Zbl
,[29] Entropy dissipation and convergence to equilibrium. Notes from a series of lectures at Institut Henri Poincaré, http://www.umpa.ens-lyon.fr/~cvillani/, will appear in Lect. Notes in Math., Springer.
,[30] Convergence to equilibrium: Entropy production and hypocoercivity. In Rarefied Gas Dynamics (ed. by M. Capitelli), AIP Conference Proceedings 762, American Institute of Physics, 2005, 8-25. | DOI | MR
,[31] Hypocoercive diffusion operators, Preprint, 2006; http://www.umpa.ens-lyon.fr/~cvillani/. | MR | Zbl
,