The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 159-194.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and $\Gamma$ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.
Tecniche di riduzione dimensionale vengono adoperate al fine di descrivere l'energia di film sottili costituiti da materiali non semplici di grado due. Il rilassamento e la $\Gamma$ convergenza conducono ad un limite definito su un opportuno spazio di misure di Young bidimensionali. La ``deformazione'' relativa al modello limite è consistente con la teoria di Cosserat.
@article{BUMI_2007_8_10B_1_a8,
     author = {Gargiulo, Giuliano and Zappale, Elvira},
     title = {The {Energy} {Density} of {Non} {Simple} {Materials} {Grade} {Two} {Thin} {Films} via a {Young} {Measure} {Approach}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {159--194},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {1},
     year = {2007},
     zbl = {1129.74028},
     mrnumber = {2310963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a8/}
}
TY  - JOUR
AU  - Gargiulo, Giuliano
AU  - Zappale, Elvira
TI  - The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 159
EP  - 194
VL  - 10B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a8/
LA  - en
ID  - BUMI_2007_8_10B_1_a8
ER  - 
%0 Journal Article
%A Gargiulo, Giuliano
%A Zappale, Elvira
%T The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
%J Bollettino della Unione matematica italiana
%D 2007
%P 159-194
%V 10B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a8/
%G en
%F BUMI_2007_8_10B_1_a8
Gargiulo, Giuliano; Zappale, Elvira. The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 159-194. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a8/

[1] E. Acerbi - G. Buttazzo, D. Percivale, A Variational Definition of the Strain Energy for an Elastic String, J. Elasticity, 25, n. 2 (1991), 137-148. | DOI | MR | Zbl

[2] S. S. Antman, Nonlinear Problems in Elasticity, Applied Mathemathical Science, 107, Springer Verlag, New York, (1995). | DOI | MR | Zbl

[3] Anzellotti - S. Baldo - D. Percivale, Dimension reduction in variational problems, asymptotic development in $\Gamma$-convergence and thin strucutures in elasticity, Asymptot. Anal., 9, No. 1 (1994), 61-100. | MR | Zbl

[4] J. Ball, A version of the fundamental theorem for Young measures, PDE's and Continuum Models of Phase Transition, M. RASCLE, D. SERRE - M. SLEMROD, eds., Lecture Notes in Phys., 334, Springer-Verlag, Berlin, (1989), 207-215. | DOI | MR | Zbl

[5] P. Belik - M. Luskin, A Total-Variation Surface Energy Model for Thin Films of Martensitic Cristals, Interfaces Free Bound., 4, n. 1 (2002), 71-88. | DOI | MR | Zbl

[6] K. Bhattacharya - R.D. James, A Theory of Thin Films of Martensitic Materials with Applications to Microactuators, J. Mech. Phys. Solids, 47, n. 3 (1999). | DOI | MR | Zbl

[7] A. Braides - I. Fonseca - G. Francfort, 3D-2D Asymptotic Analysis for Inhomogeneous Thin Films, Indiana Univ. Math. J., 49, n. 4 (2000), 1367-1404. | DOI | MR | Zbl

[8] A. Braides - I. Fonseca - G. Leoni, $mathcal{A}$-quasiconvexity: relaxation and homogenization, ESAIM, Control Optim. Calc. Var., 5 (2000), 539-577. | fulltext EuDML | DOI | MR | Zbl

[9] M. Bocea - I. Fonseca, Equi-integrability Results for 3D-2D Dimension Reduction Problems, ESAIM: Control Optim. Calc. Var., 7 (2002), 443-470. | fulltext EuDML | DOI | MR | Zbl

[10] M. Bocea - I. Fonseca, A Young Measure Approach to a Nonlinear Membrane Model Involving the Bending Moment, Proc. Royal Soc. Edimb. (2004) to appear. | DOI | MR | Zbl

[11] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics, 207. Harlow: Longman Scientific and Technical; New York: John Wiley and Sons. (1989). | MR

[12] L. Carbone - R. De Arcangelis, Unbounded functionals in the calculus of variations. Representations, relaxation, and homogenization, Chapman and Hall/CRC Research Notes in Mathematics, 125 Boca Raton, Chapman and Hall/CRC. xiii, (2002). | MR

[13] P.G. Ciarlet, Mathematical elasticity. Vol. II. Theory of plates. Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, (1997). | MR | Zbl

[14] P.G. Ciarlet - P. Destuynder, A Justification of the Two-Dimensional Linear Plate Model, J. Mécanique 18, n. 2 (1979), 315-344. | MR | Zbl

[15] M. Ciarletta - D. Iesan, Nonclassical Elastic Solids Pitman Research Notes in Mathematics, Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., 293, New York, (1993). | MR

[16] G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhauser, Boston (1993). | DOI | MR | Zbl

[17] A. Damlamian - M. Vogelius, Homogenization Limits of the Equations of Elasticity in Thin Domains, SIAM J. Math. Anal., 18 n. 2 (1987) 435-451. | DOI | MR | Zbl

[18] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) n. 6 (1975), 842-850. | MR

[19] I. Fonseca - S. Müller, A-quasiconvexity, Lower Semicontinuity and Young measures, SIAM J. Math. Anal., 30 (6) (1999), 1355-1390. | DOI | MR

[20] L. Freddi - R. Paroni, The energy density of martensitic thin films via dimension reduction, Interfaces Free Bound-. 6, n. 4 (2004), 439-459. | DOI | MR | Zbl

[21] L. Freddi - R. Paroni, A 3D-1D Young measure theory of an elastic string, Asymptotic Analysis, 39 n. 1 (2004), 61-89. | MR | Zbl

[22] G. Friesecke - R. D. James - S. Müller, Rigorous Derivation of nonlinear plate theory and geometric rigidity, C. R., Math., Acad. Sci. Paris, 334, No. 2 (2002), 173-178. | DOI | MR | Zbl

[23] G. Friesecke - R.D. James - J. Müller, A Theorem on Geometric Rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., 55, No. 11 (2002), 1461-1506. | DOI | MR | Zbl

[24] D.D. Fox - A. Raoult - J. C. Simo, A Justification of Nonlinear Properly Invariant Plate Theories, Arch. Rational Mech. Anal., 124, n. 2 (1993), 157-199. | DOI | MR | Zbl

[25] G. Gargiulo, E. Zappale, A Remark on the Junction in a Thin Multi-Domain: the Non Convex Case, to appear on NoDEA. | DOI | MR | Zbl

[26] A. Gaudiello - B. Gustafsson - C. Lefter - J. Mossino, Asymptotic analysis of a class of minimization problems in a thin multidomain, Calc. Var. Partial Differ. Equ., 15, No. 2 (2002), 181-202. | DOI | MR | Zbl

[27] A. Gaudiello - R. Monneau - J. Mossino - F. Murat - A. Sili, On the junction of elastic plates and beams, C. R., Math., Acad. Sci. Paris, 335, No. 8 (2002), 717-722. | DOI | MR | Zbl

[28] A. Gaudiello - E. Zappale, Junction in a Thin Multidomain for a Fourth Order Problem, to appear on Math. Mod. Meth. Appl. Sc. | DOI | MR | Zbl

[29] M. Giaquinta - G. Modica, Regularity Results for Some Classes of Higher Order Non-Linear Elliptic Systems, J. für reine and angew. Math., 311/312 (1979), 145-169. | fulltext EuDML | MR | Zbl

[30] R. James - D. Kinderlehrer, Theory of Diffusionless Phase Transition, Lecture Notes in Physics, 334, Springer (1989), 51-84. | DOI | MR | Zbl

[31] D. Kinderlehrer - P. Pedregal, Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal., 115 (1991), 329-265. | DOI | MR | Zbl

[32] D. Kinderlehrer - P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., 4 (1994), 59-90. | DOI | MR | Zbl

[33] H. Le Dret - A. Raoult, The Nonlinear Membrane Model as Variational Limit of Nonlinear Three-Dimensional Elasticity, J. Math. Pures Appl., 74, n. 6 (1995), 549-578. | MR | Zbl

[34] H. Le Dret - A. Raoult, Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results, Arch. Rational Mech. Anal., 154, n. 2 (2000), 101-134. | DOI | MR | Zbl

[35] H. Le Dret - N. Meunier, Modeling Heterogeneous Wires Made of Martensitic Materials, C. R. Acad. Sci. Paris Sér. I. Math., 337, (2003), 143-147. | DOI | MR | Zbl

[36] H. Le Dret - N. Meunier, Modeling Heterogeneous Martensitic Wires, Preprint Laboratoire J. L. Lions, Univ. P. et M. Curie, Parigi, in preparation. | DOI | MR | Zbl

[37] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag Berlin, 1966. | MR | Zbl

[38] P. Pedregal, Parametrized measures and Variational Principles, Birkhäuser, Boston (1997). | DOI | MR

[39] P.M. Santos - E. Zappale, Second Order Analysis for Thin Structures, Nonlinear Anal., Theory Methods Appl., 56A, n. 5 (2004), 679-713. | DOI | MR | Zbl

[40] Y.C. Shu, Heterogeneous Thin Films of Martensitic Materials, Arch. Rational Mech. Anal. 153, n. 1 (2000), 39-90. | DOI | MR | Zbl

[41] R.A. Toupin, Elastic Materials with Couple-Stresses, Arch. Rational Mech. Anal., 11, (1962), 386-414. | DOI | MR | Zbl

[42] R.A. Toupin, Theories of Elasticity with Couple Stress, Arch. Rational Mech. Anal., 17 (1964), 85-112. | DOI | MR | Zbl

[43] M. Valadier, A course on Young Measures, Rend. Ist. Mat. Univ. Trieste, 26, Suppl., (1994), 349-394. | MR