Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_1_a2, author = {Anderson, Daniel D. and Zafrullah, Muhammad}, title = {The {Schreier} {Property} and {Gauss'} {Lemma}}, journal = {Bollettino della Unione matematica italiana}, pages = {43--62}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {1}, year = {2007}, zbl = {1129.13025}, mrnumber = {2310957}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a2/} }
TY - JOUR AU - Anderson, Daniel D. AU - Zafrullah, Muhammad TI - The Schreier Property and Gauss' Lemma JO - Bollettino della Unione matematica italiana PY - 2007 SP - 43 EP - 62 VL - 10B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a2/ LA - en ID - BUMI_2007_8_10B_1_a2 ER -
Anderson, Daniel D.; Zafrullah, Muhammad. The Schreier Property and Gauss' Lemma. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 43-62. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a2/
[1] Splitting the t-class group, J. Pure Appl. Algebra, 74 (1991), 17-37. | DOI | MR | Zbl
- - ,[2] Some generalizations of GCD-domains, Factorization in Integral Domains, 439-480, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997. | MR
- ,[3] Cohn's completely primal elements, Zero-dimensional Commutative Rings, 115-123, Lecture Notes in Pure and Appl. Math., 171, Dekker, New York, 1995. | MR | Zbl
- , .[4] Splitting sets in integral domains, Proc. Amer. Math. Soc., 129 (2001), 2209-2217. | DOI | MR | Zbl
- ,[5] Integral v-ideals, Glasgow Math. J., 22 (1981), 167-172. | DOI | MR | Zbl
,[6] Integral domains that satisfy Gauss's lemma, Michigan Math. J., 22 (1975), 39-51. | MR | Zbl
- ,[7] Overrings and divisorial ideals of rings of the form D+M, Michigan Math. J., 20 (1973), 79-95. | MR | Zbl
- ,[8] An antimatter domain that is not pre-Schreier, preprint.
- ,[9] Bezout rings and their subrings, Proc. Cambridge Phil. Soc., 64 (1968), 251-264. | MR | Zbl
,[10] On integral domains with no atoms, Comm. Algebra, 27 (1999), 5813-5831. | DOI | MR | Zbl
- - ,[11] Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math., 4 (1978), 551-567. | MR | Zbl
,[12] Multiplicative Ideal Theory, Dekker, New York, 1972. | MR | Zbl
,[13] Divisibility properties in semigroup rings, Michigan Math. J., 21 (1974), 65-86. | MR | Zbl
- ,[14] Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137-147. | MR | Zbl
- ,[15] Commutative Rings, Allyn and Bacon, Boston, 1970. | MR
,[16] The GCD property and irreducible quadratic polynomials, Internat. J. Math. Sci., 9 (1986), 749-752. | fulltext EuDML | DOI | MR | Zbl
- - ,[17] Contents of polynomials and invertibility, Comm. Algebra, 18 (1990), 1569-1583. | DOI | MR | Zbl
- - ,[18] Schreier rings, Bull. London Math. Soc., 10 (1978), 77-80. | DOI | MR
- ,[19] Exact sequences of semi-value groups, J. Reine Angew Math. 283/284 (1976), 388-401. | fulltext EuDML | MR | Zbl
- ,[20] Quadratic polynomials, factorization in integral domains and Schreier domains in pullbacks, Mathematika, 50 (2003), 103-112. | DOI | MR | Zbl
,[21] Groups of Divisibility, Dissertation, Florida State University, 1973.
,[22] Quadratic polynomials and unique factorization, Amer. Math. Monthly, 109 (2002), 70-72. | DOI | MR | Zbl
,[23] On a property of pre-Schreier domains, Comm. Algebra, 15 (1987), 1895-1920. | DOI | MR | Zbl
,[24] Well-behaved prime t-ideals, J. Pure Appl. Algebra, 65 (1990), 199-207. | DOI | MR | Zbl
,[25] Putting t-invertibility to use, Non-Noetherian Commutative Ring Theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000. | MR | Zbl
,