A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 237-252.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $\gamma, \tau \colon [a, b] \rightarrow R^{k+1}$ be a couple of Lipschitz maps such that $\gamma' = \pm |\gamma'|\tau$ almost everywhere in $[a, b]$. Then $\gamma([a, b])$ is a $C^2$-rectifiable set, namely it may be covered by countably many curves of class $C^2$ embedded in $R^{k+1}$. As a conseguence, projecting the rectifiable carrier of a one-dimensional generalized Gauss graph provides a $C^2$-rectifiable set.
Siano $\gamma, \tau \colon [a, b] \rightarrow R^{k+1}$ due mappe Lipschitziane tali che $\gamma' = \pm |\gamma'|\tau$, quasi ovunque in $[a, b]$. Allora $\gamma([a, b])$ è un insieme $C^2$-rettificabile, ossia esso è incluso (eccetto per un insieme di misura nulla) in una unione numerabile di sottovarietà uno-dimensionali di $R^{k+1}$ di classe $C^2$. Di conseguenza, la proiezione del carrier rettificabile di un grafico di Gauss generalizzato uno-dimensionale è un insieme $C^2$- rettificabile.
@article{BUMI_2007_8_10B_1_a11,
     author = {Delladio, Silvano},
     title = {A {Result} {About} $C^2${-Rectifiability} of {One-Dimensional} {Rectifiable} {Sets.} {Application} to a {Class} of {One-Dimensional} {Integral} {Currents}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {237--252},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {1},
     year = {2007},
     zbl = {1178.53003},
     mrnumber = {2310966},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/}
}
TY  - JOUR
AU  - Delladio, Silvano
TI  - A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 237
EP  - 252
VL  - 10B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/
LA  - en
ID  - BUMI_2007_8_10B_1_a11
ER  - 
%0 Journal Article
%A Delladio, Silvano
%T A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents
%J Bollettino della Unione matematica italiana
%D 2007
%P 237-252
%V 10B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/
%G en
%F BUMI_2007_8_10B_1_a11
Delladio, Silvano. A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 237-252. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/

[1] G. Anzellotti - R. Serapioni, $C^k$-rectifiable sets, J. reine angew. Math., 453 (1994), 1-20. | fulltext EuDML | MR

[2] G. Anzellotti - R. Serapioni - I. Tamanini, Curvatures, Functionals, Currents, Indiana Univ. Math. J., 39 (1990), 617-669. | DOI | MR

[3] S. Delladio, Slicing of Generalized Surfaces with Curvatures Measures and Diameter's Estimate, Ann. Polon. Math., LXIV 3 (1996), 267-283. | fulltext EuDML | DOI | MR | Zbl

[4] S. Delladio, Do Generalized Gauss Graphs Induce Curvature Varifolds? Boll. Un. Mat. Ital., 10-B (1996), 991-1017. | MR | Zbl

[5] S. Delladio, The projection of a rectifiable Legendrian set is $C^2$-rectifiable: a simplified proof, Proc. Royal Soc. Edinburgh, 133A (2003), 85-96. | DOI | MR | Zbl

[6] S. Delladio, Taylor's polynomials and non-homogeneous blow-ups, Manuscripta Math., 113, n. 3 (2004), 383-396. | DOI | MR | Zbl

[7] S. Delladio, Non-homogeneous dilatations of a function graph and Taylor's formula: some results about convergence, Real Anal. Exchange, 29, n. 2 (2003/2004), 1-26. | DOI | MR

[8] H. Federer, Geometric Measure Theory, Springer-Verlag 1969. | MR | Zbl

[9] J.H.G. Fu, Some Remarks On Legendrian Rectifiable Currents, Manuscripta Math., 97, n. 2 (1998), 175-187. | DOI | MR | Zbl

[10] J.H.G. Fu, Erratum to ``Some Remarks On Legendrian Rectifiable Currents'', Manuscripta Math., 113, n. 3 (2004), 397-401. | DOI | MR | Zbl

[11] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995. | DOI | MR | Zbl

[12] F. Morgan, Geometric Measure Theory, a beginner's guide, Academic Press Inc. 1988. | MR | Zbl

[13] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Canberra, Australia, 3 (1984). | MR

[14] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | MR | Zbl