A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 237-252
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $\gamma, \tau \colon [a, b] \rightarrow R^{k+1}$ be a couple of Lipschitz maps such that $\gamma' = \pm |\gamma'|\tau$ almost everywhere in $[a, b]$. Then $\gamma([a, b])$ is a $C^2$-rectifiable set, namely it may be covered by countably many curves of class $C^2$ embedded in $R^{k+1}$. As a conseguence, projecting the rectifiable carrier of a one-dimensional generalized Gauss graph provides a $C^2$-rectifiable set.
@article{BUMI_2007_8_10B_1_a11,
author = {Delladio, Silvano},
title = {A {Result} {About} $C^2${-Rectifiability} of {One-Dimensional} {Rectifiable} {Sets.} {Application} to a {Class} of {One-Dimensional} {Integral} {Currents}},
journal = {Bollettino della Unione matematica italiana},
pages = {237--252},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {1},
year = {2007},
zbl = {1178.53003},
mrnumber = {2310966},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/}
}
TY - JOUR AU - Delladio, Silvano TI - A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents JO - Bollettino della Unione matematica italiana PY - 2007 SP - 237 EP - 252 VL - 10B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/ LA - en ID - BUMI_2007_8_10B_1_a11 ER -
%0 Journal Article %A Delladio, Silvano %T A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents %J Bollettino della Unione matematica italiana %D 2007 %P 237-252 %V 10B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/ %G en %F BUMI_2007_8_10B_1_a11
Delladio, Silvano. A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 237-252. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a11/