I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale
Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 3, pp. 465-495.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2007_8_10A_3_a3,
     author = {Giorgilli, Antonio},
     title = {I moti quasi periodici e la stabilit\`a del sistema solare.  {II:} {Dai} tori di {Kolmogorov} alla stabilit\`a esponenziale},
     journal = {Bollettino della Unione matematica italiana},
     pages = {465--495},
     publisher = {mathdoc},
     volume = {Ser. 8, 10A},
     number = {3},
     year = {2007},
     zbl = {0135.42602},
     mrnumber = {2394380},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a3/}
}
TY  - JOUR
AU  - Giorgilli, Antonio
TI  - I moti quasi periodici e la stabilità del sistema solare.  II: Dai tori di Kolmogorov alla stabilità esponenziale
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 465
EP  - 495
VL  - 10A
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a3/
LA  - it
ID  - BUMI_2007_8_10A_3_a3
ER  - 
%0 Journal Article
%A Giorgilli, Antonio
%T I moti quasi periodici e la stabilità del sistema solare.  II: Dai tori di Kolmogorov alla stabilità esponenziale
%J Bollettino della Unione matematica italiana
%D 2007
%P 465-495
%V 10A
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a3/
%G it
%F BUMI_2007_8_10A_3_a3
Giorgilli, Antonio. I moti quasi periodici e la stabilità del sistema solare.  II: Dai tori di Kolmogorov alla stabilità esponenziale. Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 3, pp. 465-495. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a3/

[1] V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk, 18, 13 (1963); Russ. Math. Surv., 18 (1963), 9. | MR

[2] V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Usp. Math. Nauk, 18 N. 6 (1963), 91; Russ. Math. Surv., 18 N. 6 (1963), 85. | MR

[3] V. I. Arnold, Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 5 N. 1 (1964), 581-585. | Zbl

[4] G. Benettin - L. Galgani - A. Giorgilli - J. M. Strelcyn, Tous les nombres characteristiques de Ljapunov sont effectivement calculables, C. R. Acad. Sc. Paris 268 A (1978), 431-433. | MR | Zbl

[5] G. Benettin - L. Galgani - A. Giorgilli - J. M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: theory, Meccanica (1980), 9-20; Part 2: numerical applications, Meccanica (1980), 21-30. | Zbl

[6] G. Benettin - L. Galgani - A. Giorgilli, A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech., 37 (1985), 1-25. | DOI | MR | Zbl

[7] G. Benettin - G. Gallavotti, Stability of motions near resonances in quasi- integrable Hamiltonian systems. Journ. Stat. Phys., 44 (1986), 293. | DOI | MR | Zbl

[8] G. D. Birkhoff, Dynamical systems, New York (1927). | MR

[9] M. Carpino - A. Milani - A. Nobili, Long term numerical integration and synthetic theories for the motion of outer planets, Astronomy and Astrophysics, 181 (1987), 182-194. | Zbl

[10] A. Celletti - L. Chierchia, KAM stability and Celestial Mechanics, Memoirs of AMS, 187 n. 878 (2007). | DOI | MR

[11] G. Contopoulos, Order and chaos in dynamical Astronomy, Springer-Verlag (2002). | DOI | MR | Zbl

[12] C. Efthimiopoulos - Z. Sandor, Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. R. Astron. Soc., (2005).

[13] E. Fermi - J. Pasta - S. Ulam, Studies of nonlinear problems, Los Alamos document LA-1940 (1955). | Zbl

[14] A. Giorgilli - E. Zehnder, Exponential stability for time dependent potentials, ZAMP (1992). | DOI | MR | Zbl

[15] A. Giorgilli - Ch. Skokos, On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261.

[16] A. Giorgilli, Notes on exponential stability of Hamiltonian systems, in Dynamical Systems, Part I: Hamiltonian systems and Celestial Mechanics Pubblicazioni del Centro di Ricerca Matematica Ennio De Giorgi, Pisa (2003), 87-198. | MR | Zbl

[17] F. G. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astron. J., 71 (1966), 670-686.

[18] M. Henon - C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J., 69 (1964), 73-79. | DOI | MR

[19] D. Kirkwood, Proceedings of the American Association for the Advancement of Science for 1866. | MR

[20] D. Kirkwood, The zone of asteroids and the ring of Saturn, Astronomical Register, 22 (1884), 243-247.

[21] A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527. | MR | Zbl

[22] J. Laskar, A numerical experiment on the chaotic behaviour of the solar system, Nature, 338 (1989), 237-238.

[23] J. Laskar, Large scale chaos in the solar system, Astron. Astroph., 287 (1994). | Zbl

[24] J. E. Littlewood, On the equilateral configuration in the restricted problem of three bodies, Proc. London Math. Soc. (3) 9 (1959), 343-372. | DOI | MR | Zbl

[25] J. E. Littlewood, The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3) 9 (1959), 525-543. | DOI | MR | Zbl

[26] U. Locatelli - A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system, DCDS-B, 7 (2007), 377-398. | DOI | MR | Zbl

[27] P. Lochak, Canonical perturbation theory via simultaneous approximations, Usp. Math. Nauk. 47 (1992), 59-140. English transl in Russ. Math. Surv. | DOI | MR | Zbl

[28] A. Milani - A. Nobili - M. Carpino, Secular variations of the semimajor axes: theory and experiments, Astronomy and Astrophysics, 172 (1987), 265-269. | Zbl

[29] A. Moltchanov, The resonant structure of the solar system, Icarus 8 (1968), 203-215.

[30] A. Morbidelli - A. Giorgilli, On the dynamics in the asteroids' belt. Part I: general theory, Cel. Mech. 47 (1990), 145-172. | DOI | MR | Zbl

[31] A. Morbidelli - A. Giorgilli, On the dynamics in the asteroids' belt. Part II: detailed study of the main resonances, Cel. Mech., 47 (1990), 173-204. | DOI | MR | Zbl

[32] A. Morbidelli - A. Giorgilli, Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607-1617. | DOI | MR

[33] A. Morbidelli, Modern celestial Mechanics. Aspects of solar system dynamics, Taylor & Francis, London (2002).

[34] J. Moser, Stabilitätsverhalten kanonisher differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl IIa, nr. 6 (1955), 87-120.

[35] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II (1962), 1-20. | Zbl

[36] J. Moser, Stable and random motions in dynamical systems, Princeton University press, Princeton (1973). | Zbl

[37] N. Murray - M. Holman, The Origin of Chaos in Outer Solar System, Science, 283, Iss. 5409, 1877 (1999).

[38] N. N. Nekhoroshev, Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surveys, 32 (1977), 1. | Zbl

[39] N. N. Nekhoroshev, Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2. Trudy Sem. Petrovs., 5 (1979), 5.

[40] P. Robutel - F. Gabern - A. Jorba, The observed Trojans and the global dynamics around the Lagrangian points of the Sun-Jupiter system, Celest. Mech. Dyn. Astr., 92 (2005), 53-69. | Zbl

[41] J. Roels - M. Hnon, Recherche des courbes invariantes d'une transformation ponctuelle plane conservant les aires, Bull. Astron., 32 (1967), 267-285. | Zbl

[42] G. J. Sussman - J. Wisdom, Numerical evidence that the motion of Pluto is chaotic, Science, 241 (1988), 433-437.