On the projective genus of surfaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 311-317
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $X \subset \mathbb{P}^N$ be a smooth irreducible non degenerate surface over the complex numbers, $N \geq 4$. We define the projective genus of $X$, denoted by $PG(X)$, as the geometric genus of the singular curve of the projection of $X$ from a general linear subspace of codimension four. Denote by $g(X)$ the sectional genus of $X$. In this paper we conjecture that the only surfaces for which $PG(X) = g(X) - 1$ are the del Pezzo surface in $\mathbb{P}^4$, in $\mathbb{P}^5$ and a conic bundle of degree 5 in $\mathbb{P}^4$. We prove that for $N \geq 5$ if $PG(X) = g(X) - 1 + \lambda$, $\lambda$ a non negative integer, then $g(X) \leq \lambda + 1 + \alpha$ where $\alpha = -2$ for a scroll and $\alpha = 0$ otherwise, and deduce the conjecture for $N \geq 5$ from this statement.
@article{BUMI_2006_8_9B_2_a4,
author = {Sabatino, Pietro},
title = {On the projective genus of surfaces},
journal = {Bollettino della Unione matematica italiana},
pages = {311--317},
publisher = {mathdoc},
volume = {Ser. 8, 9B},
number = {2},
year = {2006},
zbl = {1178.14037},
mrnumber = {2233140},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a4/}
}
Sabatino, Pietro. On the projective genus of surfaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 311-317. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a4/