Congruences between modular forms and related modules
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 507-514
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We fix $\ell$ a prime and let $M$ be an integer such that $\ell \operatorname{\not|} M$; let $f \in S_2(\Gamma_1(M\ell^2))$ be a newform supercuspidal of fixed type at $\ell$ and special at a finite set of primes. For an indefinite quaternion algebra over $Q$, of discriminant dividing the level of $f$, there is a local quaternionic Hecke algebra $T$ associated to $f$. The algebra $T$ acts on a module $M_f$ coming from the cohomology of a Shimura curve. Applying the Taylor-Wiles criterion and a recent Savitt's theorem, $T$ is the universal deformation ring of a global Galois deformation problem associated to $\bar\rho_f$. Moreover $M_f$ is free of rank 2 over $T$. If $f$ occurs at minimal level, as a consequence of our results and by the classical Ihara's lemma, we prove a theorem of raising the level and a result about congruence ideals. The extension of this results to the non minimal case is an open problem.
@article{BUMI_2006_8_9B_2_a12,
author = {Ciavarella, Miriam},
title = {Congruences between modular forms and related modules},
journal = {Bollettino della Unione matematica italiana},
pages = {507--514},
publisher = {mathdoc},
volume = {Ser. 8, 9B},
number = {2},
year = {2006},
zbl = {1178.11044},
mrnumber = {2233148},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a12/}
}
Ciavarella, Miriam. Congruences between modular forms and related modules. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 507-514. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a12/