Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9A_3-1_a3, author = {Caire, Luisella and Cerruti, Umberto}, title = {Questo numero \`e primo? {S{\`\i},} forse, dipende ...}, journal = {Bollettino della Unione matematica italiana}, pages = {449--481}, publisher = {mathdoc}, volume = {Ser. 8, 9A}, number = {3-1}, year = {2006}, zbl = {1195.00012}, mrnumber = {2123939}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a3/} }
TY - JOUR AU - Caire, Luisella AU - Cerruti, Umberto TI - Questo numero è primo? Sì, forse, dipende ... JO - Bollettino della Unione matematica italiana PY - 2006 SP - 449 EP - 481 VL - 9A IS - 3-1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a3/ LA - it ID - BUMI_2006_8_9A_3-1_a3 ER -
Caire, Luisella; Cerruti, Umberto. Questo numero è primo? Sì, forse, dipende .... Bollettino della Unione matematica italiana, Série 8, 9A (2006) no. 3-1, pp. 449-481. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a3/
[1] On distinguishing prime numbers from composite numbers, Annals of Mathematics, 117 (1983), 173-206. | Zbl
- - ,[2] Unusual infinity of prime numbers, URL: http://citeseer.ifi.unizh.ch/agadzhanov01unusual.html, 2001
,[3] PRIMES is in P, Annals of Mathematics, 160 (2004), 781-793. | DOI | MR
- - ,[4] There are infinitely many Carmichael numbers, Annals of Mathematics, 139 (1994), 703-722. | DOI | MR | Zbl
- - ,[5] Lucas pseudoprimes, Mathematics of Computation, 35 (1980), 1391-1417. | DOI | MR
- ,[6] Distinguishing prime numbers from composite numbers: the state of the art in 2004, URL: http://cr.yp.to/papers.html#prime2004 (2004).
,[7] New Primality Criteria and Factorizations for $2^m \pm 1$, Mathematics of Computations, 29 (1975), 620-647. | DOI | MR | Zbl
- - ,[8] Prime Numbers: a computational perspective, Springer-Verlag, 2002. | DOI | MR | Zbl
- ,[9] Primality Testing using Elliptic Curves, Journal of the ACM, 46 (1999), 450-472. | DOI | MR | Zbl
- ,[10] Introduzione alla Crittografia, Hoepli Editore, Milano, 2004.
- ,[11] Reciprocity Laws: From Euler to Eisenstein, Springer, 2000. | DOI | MR
,[12] Sur la recherche des grands nombres premiers, Association Française pour l'Avancement des Sciences, Comptes Rendus, 5 (1876), 61-68.
,[13] Riemann's Hypothesis and tests for Primality, J. of Comp. Sys. Sci. 13 (1976), 300-317. | DOI | MR | Zbl
,[14] On the combined Fermat/Lucas probable prime test, in Crypto and Coding '99, Lecture Notes in Computer Science 1746, Springer-Verlag 1999, 222-235. | DOI | MR | Zbl
,[15] Determination of the prime or composite nature of large numbers by Fermat's theorem, Proceedings of the Cambridge Philosophical Society, 18 (1914), 29-30. | Zbl
,[16] Primality testing: variations on a theme of Lucas, in corso di pubblicazione su Proceedings of MSRI Workshop, J. Buhler and P. Stevenhagen, eds. 2005, URL: http://cm.bell-labs.com/cm/ms/who/carlp/primalitytalk5.ps
,[17] Probabilistic Algorithms, in 'Algorithms and Complexity: new directions and recent results', J. F. Traub Edt., Academic Press, 1976, 21-39. | MR
,[18] Probabilistic Algorithms for Testing Primality, Journal of Number Theory, 12 (1980), 128-138. | DOI | MR | Zbl
,[19] The Book of Prime Numbers Records, Springer-Verlag, 1988. | DOI | MR | Zbl
,[20] A fast Montecarlo test for primality, SIAM Journal on Computing, 6 (1977), 84-85. | DOI | MR | Zbl
- ,[21] Primality testing of large numbers in Maple, Computers and Mathematics with Applications, 12 (1995), 1-8. | DOI | MR | Zbl
,