Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9A_3-1_a0, author = {Maggesi, Marco and Simpson, Carlos}, title = {Verifica automatica del ragionamento matematico}, journal = {Bollettino della Unione matematica italiana}, pages = {361--389}, publisher = {mathdoc}, volume = {Ser. 8, 9A}, number = {3-1}, year = {2006}, zbl = {1195.03018}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a0/} }
TY - JOUR AU - Maggesi, Marco AU - Simpson, Carlos TI - Verifica automatica del ragionamento matematico JO - Bollettino della Unione matematica italiana PY - 2006 SP - 361 EP - 389 VL - 9A IS - 3-1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a0/ LA - it ID - BUMI_2006_8_9A_3-1_a0 ER -
Maggesi, Marco; Simpson, Carlos. Verifica automatica del ragionamento matematico. Bollettino della Unione matematica italiana, Série 8, 9A (2006) no. 3-1, pp. 361-389. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a0/
[1] AA.VV. The QED manifesto. In Proceedings of the 12th International Conference on Automated Deduction (Springer-Verlag, 1994), 238-251.
[2] The Archive of Formal Proofs. Url: http://afp.sourceforge.net/. | Zbl
[3] Towards a higher reasoning level in formalized Homological Algebra. In Thérèse Hardin and Renaud Rioboo, editors, 11th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning (Calculemus) (Rome, Italy, 2003), 84-88. Aracne Editrice.
- - ,[4] Mechanized metatheory for the masses: The PoplMark challenge. In International Conference on Theorem Proving in Higher Order Logics (TPHOLs), Lecture Notes in Computer Science. Springer Verlag, August 2005. Url: http://fling-l.seas.upenn.edu/~plclub/cgi-bin/poplmark/. | Zbl
- - - - - - - - - ,[5] Proof by pointing. In Theoretical aspects of computer software (Sendai, 1994), volume 789 of Lecture Notes in Comput. Sci. (Springer, Berlin, 1994), 141-160. | Zbl
- - ,[6] The Computer Modelling of Mathematical Reasoning. Academic Press, 1983. Trad. it. [7] | Zbl
,[7] L'automazione del ragionamento matematico: dalla dimostrazione dei teoremi alla formazione dei concetti. Muzzio, Padova, 1986. Edizione italiana di [6] Traduzione a cura di Mauro Boscarol.
,[8] In Math, Computers Don't Lie. Or Do They? New York Times, April 6, 2004. | Zbl
,[9] A formulation of the simple theory of types. Journal of Symbolic Logic, 5 (1940), 56-68. | Zbl
,[10] The Coq proof assistant. Url: http://coq.inria.fr/. | Zbl
[11] A Combination of Geometry Theorem Proving and Nonstandard Analysis, with Application to Newton's Principia. (Springer-Verlag, 2001). | Zbl
,[12] Proving Newton's Propositio Kepleriana using geometry and nonstandard analysis in Isabelle. In Automated deduction in geometry (Beijing, 1998), volume 1669 of Lecture Notes in Comput. Sci. (Springer, Berlin, 1999), 47-66. | Zbl
- ,[13] Mechanizing nonstandard real analysis. LMS J. Comput. Math., 3 (electronic) (2000), 140-190. | Zbl
- ,[14] Formal methods web page at Oxford. Url: http://www.afm.sbu.ac.uk/.
[15] WWW Interactive Multipurpose Server. Url: http://wims.unice.fr/.
,[16] FTA: Fundamental Theorem of Algebra Project. Url: http://www.cs.kun.nl/'freek/fta/
- - - - ,[17] A constructive proof of the Fundamental Theorem of Algebra without using the rationals. In TYPES, 2000, 96-111. | Zbl
- - ,[18] The flyspeck project. Url: http://www.math.pitt.edu/~thales/fly-speck/.
,[19] Formalized mathematics. Technical Report 36, Turku Centre for Computer Science (TUCS), Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland, 1996. Url: http://www.cl.cam.ac.uk/users/jrh/papers/form-math3.html.
,[20] Constructive category theory. In Proof, language, and interaction, Found. Comput. Ser., MIT Press, Cambridge, MA, 2000, 239-275.
- ,[21] ISABELLE, Url: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.
[22] Journal of Formalized Mathematics. Url: http://mizar.org/JFM/.
[23] Checking Landau's «Grundlagen» in the AUTOMATH System. PhD thesis, Eindhoven University of Technology, 1977. | Zbl
,[24] A formal proof of Sylow's theorem. An experiment in abstract algebra with Isabelle HOL. J. Automat. Reason., 23(3-4) (1999), 235-264.
- ,[25] Simple word problems in universal algebras. In J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970 (Springer, Berlin, Heidelberg, 1983), 342-376.
- ,[26] Grundlagen der Analysis. Akademische Verlagsgesellschaft, Leipzig, Germany, 1930. English translation Foundations of Analysis, Chelsea Publishing Company, 1951.
,[27] Solution of the Robbins problem. Journal of Automated Reasoning (1997), 263-276. Url: http://www-unix.mcs.anl.gov/~mccune/papers/robbins/. | Zbl
,[28] Automated deduction in equational logic and cubic curves, volume 1095 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996. Lecture Notes in Artificial Intelligence. | Zbl
- ,[29] Mizar system. Url: http://mizar.uw.bialystok.pl/.
[30] More Church-Rosser proofs (in Isabelle/HOL). In M.A. McRobbie and J.K. Slaney, editors, Proceedings of the 13th International Conference on Automated Deduction (CADE-13), pp. 733-747, New Brunswick, New Jersey, July 1996. Springer-Verlag LNAI 1104.
,[31] Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. | Zbl
- - ,[32] Proof of Gödel's first incompleteness theorem in Coq. Url: http://math.berkeley.edu/'roconnor/godel.html.
,[33] Densité maximale des empilements de sphéres en dimension 3 (d'après Thomas C. Hales et Samuel P. Ferguson). Astérisque, (266):Exp. No. 863, 5, 405-413, 2000. Séminaire Bourbaki, Vol. 1998/99. | fulltext EuDML
,[34] Towards a readable formalisation of category theory. Electronic Notes in Theoretical Computer Science, 91:212--228, February 2004. | Zbl
,[35] OTTER, An automated deduction system. Url: http://www-unix.mcs.anl.gov/AR/otter/.
[36] An Equational Characterization of the Conic Construction on Cubic Curves. Number 1095 in Lecture Notes in Computer Science (AI subseries). Springer-Verlag, 1996.
- ,[37] Automated Deduction in Equational Logic and Cubic Curves (Springer Verlag, 1996). | Zbl
- ,[38] The relative consistency of the axiom of choice mechanized using Isabelle/ZF. LMS J. Comput. Math., 6 (electronic) (2003), 198-248. Appendix A available electronically at http://www.lms.ac.uk/jcm/6/lms2003-001/appendix-a/ | Zbl
,[39] Proof and beauty. The Economist, marzo 2005.
[40] The PhoX proof assistant. Url: http://www.lama.univ-savoie.fr/'raffalli/phox.html.
,[41] Computer assisted teaching in mathematics. In Workshop on 35 years of Automath (Avril 2002, Edingurgh), 2002.
- ,[42] Computer theorem proving in math, 2003. arXiv:math.HO/0311260.
,[43] Set-theoretical mathematics in Coq, 2004. arXiv:math.LO/0402336.
,[44] A machine-checked implementation of Buchberger's algorithm. J. Automat. Reason., 26(2) (2001), 107-137. | Zbl
,[45] Comparing mathematical provers. In Andrea Asperti, Bruno Buchberger, and James Davenport, editors, Mathematical Knowledge Management, number 2594 in Lecture Notes on Computer Science, pp 188-202. Springer, 2003. Proceedings of MKM 2003. | Zbl
,[46] Vanquishing the XCB Question: The Methodological Discovery of the Last Shortest Single Axiom for the Equivalential Calculus. Journal of Automated Reasoning, 29(2) (2002), 107-124. | Zbl
- - ,