Some applications of the Pascal matrix to the study of numerical methods for differential equations
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 639-651.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.
In questo articolo analizziamo i legami tra la matrice di Pascal e una nuova classe di metodi numerici per equazioni differenziali ottenuti come generalizzazione dei metodi di Adams. In particolare, proveremo che i metodi in tale classe possono essere utilizzati per risolvere problemi di tipo stiff in quanto le regioni di assoluta stabilità ad essi associate contengono il semipiano negativo.
@article{BUMI_2005_8_8B_3_a7,
     author = {Aceto, Lidia},
     title = {Some applications of the {Pascal} matrix to the study of numerical methods for differential equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {639--651},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1117.65118},
     mrnumber = {1941945},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a7/}
}
TY  - JOUR
AU  - Aceto, Lidia
TI  - Some applications of the Pascal matrix to the study of numerical methods for differential equations
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 639
EP  - 651
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a7/
LA  - en
ID  - BUMI_2005_8_8B_3_a7
ER  - 
%0 Journal Article
%A Aceto, Lidia
%T Some applications of the Pascal matrix to the study of numerical methods for differential equations
%J Bollettino della Unione matematica italiana
%D 2005
%P 639-651
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a7/
%G en
%F BUMI_2005_8_8B_3_a7
Aceto, Lidia. Some applications of the Pascal matrix to the study of numerical methods for differential equations. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 639-651. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a7/

[1] L. Aceto, On the Stability Problem arising in Numerical Methods for ODEs, Ph. D. Thesis, Genova, 2001.

[2] L. Aceto - D. Trigiante, On the A-stable methods in the GBDF class, Nonlinear Analysis: Real World Applications, 3 (2002), 9-23. | MR | Zbl

[3] P. Amodio - F. Mazzia, A Boundary Value Approach to the Numerical Solution of Initial Value Problems by Multistep Methods, J. Difference Eq. Appl., 1 (1995), 353-367. | MR | Zbl

[4] P. Amodio - F. Mazzia, Boundary Value Methods based on Adams-type methods, Appl. Num. Math., 18 (1995), 23-35. | MR | Zbl

[5] L. Brugnano - D. Trigiante, Boundary Value Method: the Third Way Between Linear Multistep and Runge-Kutta Methods, Comput. Math. Appl., 36 (1998), 269-284. | MR | Zbl

[6] L. Brugnano - D. Trigiante, Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon and Breach Science Publishers, Amsterdam, 1998. | MR

[7] E. Hairer - G. Wanner, Solving Ordinary Differential Equations II, Springer Series in Computational Mathematics, vol.14, Springer-Verlag, Berlin, 1991. | MR | Zbl

[8] F. Iavernaro - F. Mazzia, GAM, August 1997. Available via www at URL http://www.dm.uniba.it/Amazzia/ode/readme.html

[9] F. Iavernaro - F. Mazzia, Solving Ordinary Differential Equations by Generalized Adams Methods: properties and implementation techniques, Appl. Num. Math., 28 (1998), 107-126. | MR | Zbl

[10] A. Prothero - A. Robinson, On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential Equations, Math. of Comput., 28 (1974), 145-162. | MR | Zbl

[11] L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994. | MR | Zbl