Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2005_8_8B_3_a6, author = {Trombetti, C.}, title = {On a class of {Monge-Amp\`ere} type equations with lower order terms}, journal = {Bollettino della Unione matematica italiana}, pages = {629--637}, publisher = {mathdoc}, volume = {Ser. 8, 8B}, number = {3}, year = {2005}, zbl = {1117.35027}, mrnumber = {1616519}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a6/} }
Trombetti, C. On a class of Monge-Ampère type equations with lower order terms. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 629-637. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a6/
[1] On properties of some nonlinear eigenvalues, SIAM J. Math. Anal., 29, no. 2 (1998), 437-451. | MR | Zbl
- - ,[2] Convex Analysis and nonlinear geometric elliptic equations, Springer-Verlag, 1994. | MR | Zbl
,[3] A direct uniqueness proof for equations involving the p-Laplace operator, Manuscripta Math., 109 (2) (2002), 229-231. | MR | Zbl
- ,[4] A symmetrization result for Monge-Ampère type equations, Preprint 2003. | MR | Zbl
- ,[5] Comparison results for Hessian equations via symmetrization, in preparation. | Zbl
- ,[6] Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Analysis. T.M.A., 10 (10) (1986), 1083-1103. | MR | Zbl
- - - ,[7] Remarks on sublinear elliptic equations, Nonlinear Analysis T.M.A., 10 (1) (1986), 55-64. | MR | Zbl
- ,[8] The Dirichlet problem for nonlinear second-order elliptic equations, Comm. Pure Appl. Math., 37 (1984), 369-402. | MR | Zbl
- - ,[9] On the regularity of Monge-Ampère equation $\det\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right) = F(x, u)$, Comm. Pure Appl. Math., 30 (1977), 41-68. | MR | Zbl
- ,[10] Equimeasurable rearrangements of functions, Queen's paper in pure and applied mathematics, n. 28. | Zbl
- ,[11] Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris, 305, Série I (1987), 521-524. | MR | Zbl
- ,[12] A symmetrization result for nonlinear elliptic equations, to appear on Revista Mat. Complutense. | MR | Zbl
- ,[13] Elliptic partial differential equations of second order, Springer-Verlag, 1983. | MR | Zbl
- ,[14] Rearrangements and convexity of the level sets in PDE, Springer-Verlag, Berlin (1985). | MR | Zbl
,[15] Nontrivial solutions for the equations of Monge-Ampere type, J. Math. Anal. Appl., 132 (1988), 424-433. | MR | Zbl
,[16] On the equation $\mathrm{div}(|\nabla u|^{p-2} \nabla u)+\lambda |u|^{p-2} u = 0$, Proceedings Amer. Math. Soc., 109 (1990), 157-164. | MR | Zbl
,[17] Sur les equations de Monge-Ampère, Arch. Rat. Mech. Anal., 89 (1985), 93-122. | MR | Zbl
,[18] Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl., 142 (1985), 263-275. | MR | Zbl
,[19] Some estimates of solutions to Monge-Ampère type equations in dimension two, Ann. scula Norm. sup. Pisa, (2) VII (1981), 183-230. | fulltext mini-dml | MR | Zbl
,[20] Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. UMI, (6) 4-B (1985), 917-949. | MR | Zbl
,[21] On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math., 488 (1997), 203-220. | MR | Zbl
,[22] On symmetrization and hessian equations, J. Anal. Math., 52 (1989), 94-106. | MR | Zbl
,[23] On a real Monge-Ampère functional, Invent. Math., 101 (1990), 425-448. | MR | Zbl
,[24] Existence of multiple solutions to the equations of Monge-Ampère type, J. Diff. Eq., 100 (1992), 95-118. | MR | Zbl
,[25] A class of fully nonlinear equations and related functionals, Indiana Univ. Math. J., 43 (1994), 25-54. | MR | Zbl
,