On a class of Monge-Ampère type equations with lower order terms
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 629-637.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove some comparison results for Monge-Ampère type equations in dimension two. We consider also the case of eigenfunctions and we prove a kind of reverse inequalities.
Si dimostrano risultati di confronto per soluzioni di equazioni tipo Monge-Ampère in dimensione due, considerando anche il caso delle autofunzioni.
@article{BUMI_2005_8_8B_3_a6,
     author = {Trombetti, C.},
     title = {On a class of {Monge-Amp\`ere} type equations with lower order terms},
     journal = {Bollettino della Unione matematica italiana},
     pages = {629--637},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1117.35027},
     mrnumber = {1616519},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a6/}
}
TY  - JOUR
AU  - Trombetti, C.
TI  - On a class of Monge-Ampère type equations with lower order terms
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 629
EP  - 637
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a6/
LA  - en
ID  - BUMI_2005_8_8B_3_a6
ER  - 
%0 Journal Article
%A Trombetti, C.
%T On a class of Monge-Ampère type equations with lower order terms
%J Bollettino della Unione matematica italiana
%D 2005
%P 629-637
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a6/
%G en
%F BUMI_2005_8_8B_3_a6
Trombetti, C. On a class of Monge-Ampère type equations with lower order terms. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 629-637. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a6/

[1] A. Alvino - V. Ferone - G. Trombetti, On properties of some nonlinear eigenvalues, SIAM J. Math. Anal., 29, no. 2 (1998), 437-451. | MR | Zbl

[2] I. J. Bakelman, Convex Analysis and nonlinear geometric elliptic equations, Springer-Verlag, 1994. | MR | Zbl

[3] M. Belloni - B. Kawohl, A direct uniqueness proof for equations involving the p-Laplace operator, Manuscripta Math., 109 (2) (2002), 229-231. | MR | Zbl

[4] B. Brandolini - C. Trombetti, A symmetrization result for Monge-Ampère type equations, Preprint 2003. | MR | Zbl

[5] B. Brandolini - C. Trombetti, Comparison results for Hessian equations via symmetrization, in preparation. | Zbl

[6] L. Boccardo - P. Drabek - D. Giachetti - M. Kucera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Analysis. T.M.A., 10 (10) (1986), 1083-1103. | MR | Zbl

[7] H. Brezis - L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Analysis T.M.A., 10 (1) (1986), 55-64. | MR | Zbl

[8] L. A. Caffarelli - L. Niremberg - Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations, Comm. Pure Appl. Math., 37 (1984), 369-402. | MR | Zbl

[9] S. Y. Cheng - S. T. Yau, On the regularity of Monge-Ampère equation $\det\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right) = F(x, u)$, Comm. Pure Appl. Math., 30 (1977), 41-68. | MR | Zbl

[10] K. M. Chong - N. M. Rice, Equimeasurable rearrangements of functions, Queen's paper in pure and applied mathematics, n. 28. | Zbl

[11] J. I. Diaz - J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris, 305, Série I (1987), 521-524. | MR | Zbl

[12] V. Ferone - B. Messano, A symmetrization result for nonlinear elliptic equations, to appear on Revista Mat. Complutense. | MR | Zbl

[13] D. Gilbarg - N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1983. | MR | Zbl

[14] B. Kawohl, Rearrangements and convexity of the level sets in PDE, Springer-Verlag, Berlin (1985). | MR | Zbl

[15] N. D. Kutev, Nontrivial solutions for the equations of Monge-Ampere type, J. Math. Anal. Appl., 132 (1988), 424-433. | MR | Zbl

[16] P. Lindqvist, On the equation $\mathrm{div}(|\nabla u|^{p-2} \nabla u)+\lambda |u|^{p-2} u = 0$, Proceedings Amer. Math. Soc., 109 (1990), 157-164. | MR | Zbl

[17] P. L. Lions, Sur les equations de Monge-Ampère, Arch. Rat. Mech. Anal., 89 (1985), 93-122. | MR | Zbl

[18] P. L. Lions, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl., 142 (1985), 263-275. | MR | Zbl

[19] G. Talenti, Some estimates of solutions to Monge-Ampère type equations in dimension two, Ann. scula Norm. sup. Pisa, (2) VII (1981), 183-230. | fulltext mini-dml | MR | Zbl

[20] G. Talenti, Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. UMI, (6) 4-B (1985), 917-949. | MR | Zbl

[21] N. S. Trudinger, On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math., 488 (1997), 203-220. | MR | Zbl

[22] K. Tso, On symmetrization and hessian equations, J. Anal. Math., 52 (1989), 94-106. | MR | Zbl

[23] K. Tso, On a real Monge-Ampère functional, Invent. Math., 101 (1990), 425-448. | MR | Zbl

[24] X. J. Wang, Existence of multiple solutions to the equations of Monge-Ampère type, J. Diff. Eq., 100 (1992), 95-118. | MR | Zbl

[25] X. J. Wang, A class of fully nonlinear equations and related functionals, Indiana Univ. Math. J., 43 (1994), 25-54. | MR | Zbl