Costruzione di spike-layers multidimensionali
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 615-628.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si studiano soluzioni positive dell’equazione $-\epsilon^{2} \Delta u+u=u^p$ in $\Omega$, dove $\Omega\subseteq \mathbb{R}^{n}$ , $p > 1$ ed $\epsilon$ è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando $\epsilon$ tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.
We study positive solutions of the equation $-\epsilon^{2} \Delta u+u=u^p$ in $\Omega$, where $\Omega\subseteq \mathbb{R}^{n}$ , $p>1$ and $\epsilon$ is a positive small parameter. Usually we put Neumann boundary conditions. When $\epsilon$ goes to zero, we prove the existence of solutions which concentrate on curves or varietis.
@article{BUMI_2005_8_8B_3_a5,
     author = {Malchiodi, Andrea},
     title = {Costruzione di spike-layers multidimensionali},
     journal = {Bollettino della Unione matematica italiana},
     pages = {615--628},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1182.35121},
     mrnumber = {1974510},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a5/}
}
TY  - JOUR
AU  - Malchiodi, Andrea
TI  - Costruzione di spike-layers multidimensionali
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 615
EP  - 628
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a5/
LA  - it
ID  - BUMI_2005_8_8B_3_a5
ER  - 
%0 Journal Article
%A Malchiodi, Andrea
%T Costruzione di spike-layers multidimensionali
%J Bollettino della Unione matematica italiana
%D 2005
%P 615-628
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a5/
%G it
%F BUMI_2005_8_8B_3_a5
Malchiodi, Andrea. Costruzione di spike-layers multidimensionali. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 615-628. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a5/

[1] A. Ambrosetti - A. Malchiodi - W.-M. Ni, Singularly Perturbed Elliptic Equation with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, Comm. Math. Phys., 235 (2003), 427-466. | MR | Zbl

[2] A. Ambrosetti - A. Malchiodi - W.-M. Ni, Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part II, Indiana Univ. Math. J., 53, no. 2 (2004), 297-329. | MR | Zbl

[3] R. G. Casten - C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq. 27, no. 2 (1978), 266-273. | MR | Zbl

[4] S. Cingolani - A. Pistoia, Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 55, no. 2 (2004), 201-215. | MR | Zbl

[5] E. N. Dancer, Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II, Indiana Univ. Math. J., 53, no. 1 (2004), 97-108. | MR | Zbl

[6] T. D'Aprile, On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Int. Eq., 16, no. 3 (2003), 349-384. | MR | Zbl

[7] M. Del Pino - P. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, no. 1 (1997), 245-265. | MR | Zbl

[8] A. Gierer - H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.

[9] C. Gui - J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52, no. 3 (2000), 522-538. | MR | Zbl

[10] T. Kato, Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. | MR | Zbl

[11] Y. Y. Li - L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. | MR | Zbl

[12] C. S. Lin - W.-M. Ni - I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eq., 72 (1988), 1-27. | MR | Zbl

[13] A. Malchiodi - M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 15 (2002), 1507- 1568. | MR | Zbl

[14] A. Malchiodi - M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124, no. 1 (2004), 105-143. | fulltext mini-dml | MR | Zbl

[15] W.-M. Ni Malchiodi - J. Wei, Multiple Clustered Layer Solutions for Semilinear Neumann Problems on A Ball, Ann. I.H.P. Analyse non lineaire, to appear. | fulltext mini-dml | Zbl

[16] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15, no. 2 (1979), 401-454. | fulltext mini-dml | MR | Zbl

[17] W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, no. 1 (1998), 9-18. | MR | Zbl

[18] W. M. Ni - I. Takagi, On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851. | MR | Zbl

[19] W. M. Ni - I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. | fulltext mini-dml | MR | Zbl

[20] J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354, no. 8 (2002), 3117-3154. | MR | Zbl

[21] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, Series B, Biological Sciences, 237 (1952), 37-72.