Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2005_8_8B_3_a11, author = {\'Alvarez, Teresa and Mart{\'\i}nez-Abej\'on, Antonio}, title = {Rosenthal and {semi-Tauberian} linear relations in normed spaces}, journal = {Bollettino della Unione matematica italiana}, pages = {707--722}, publisher = {mathdoc}, volume = {Ser. 8, 8B}, number = {3}, year = {2005}, zbl = {1179.47019}, mrnumber = {844105}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/} }
TY - JOUR AU - Álvarez, Teresa AU - Martínez-Abejón, Antonio TI - Rosenthal and semi-Tauberian linear relations in normed spaces JO - Bollettino della Unione matematica italiana PY - 2005 SP - 707 EP - 722 VL - 8B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/ LA - en ID - BUMI_2005_8_8B_3_a11 ER -
%0 Journal Article %A Álvarez, Teresa %A Martínez-Abejón, Antonio %T Rosenthal and semi-Tauberian linear relations in normed spaces %J Bollettino della Unione matematica italiana %D 2005 %P 707-722 %V 8B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/ %G en %F BUMI_2005_8_8B_3_a11
Álvarez, Teresa; Martínez-Abejón, Antonio. Rosenthal and semi-Tauberian linear relations in normed spaces. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 707-722. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/
[1] A note on three-space ideals of Banach spaces, Proceedings of the Tenth Spanish-Portuguese Conference on Mathematics, III (Murcia, 1985), Univ. Murcia (1985), 251-254. | MR
- ,[2] Adjoint characterisations of unbounded weakly compact, weakly completely continuous and unconditionally converging operators, Studia Math., 113 (3) (1995), 293-298. | fulltext mini-dml | MR | Zbl
- - ,[3] Factorization of unbounded thin and cothin operators, Quaestiones Math., 22 (1999), 519-529. | MR | Zbl
- - ,[4] Differential Inclusions, Springer-Verlag, New York, 1984. | MR | Zbl
- ,[5] Set Valued Analysis, Birkhauser, Boston, 1990. | MR | Zbl
- ,[6] A double-dual characterisation of Rosenthal and semi-Tauberian operators, Proc. Royal Irish Acad., Ser. A, 95 (1995), 69-75. | MR | Zbl
- ,[7] Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983. | MR | Zbl
,[8] Properties of Some Norm Related Functions of Unbounded Linear Operators, Math. Z., 199 (1988), 285-303. | MR | Zbl
,[9] A characterisation of almost reflexive normed spaces, Proc. Royal Irish Acad., Ser. A 92 (1992), 225-228. | MR | Zbl
,[10] Multivalued Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, 213, Marcel Dekker, New York, 1998. | MR | Zbl
,[11] Factoring weakly compact operators, J. Funct. Anal., 17 (1974), 311-327. | MR | Zbl
- - - ,[12] Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura. Appl. (4) 163 (1993), 353-384. | MR | Zbl
- ,[13] On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Camb. Phil. Soc., 71 (1972), 495-497. | MR | Zbl
- ,[14] Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A 88 A (1988), 35- 38. | MR | Zbl
- ,[15] Dual results of factorization for operators, Ann. Acad. Sc. Fenn., Ser. A. I. Math. 18 (1993), 3-11. | MR | Zbl
,[16] Partial differential relations, Springer-Verlag, Berlin, 1986. | MR | Zbl
,[17] Some Properties of the Second Conjugate of a Tauberian operator, J. Math. Anal. Appl., 228 (1998), 60-65. | MR | Zbl
,[18] Tauberian operators in Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255. | MR | Zbl
- ,[19] Topologie I, Polska Akademia Nauk. Warsaw, 1952. | Zbl
,[20] Classical Banach spaces I, Springer-Verlag, Berlin, 1977. | MR | Zbl
- ,[21] Continuous selections I, II, III, Annals of Math., 63, 361-381; 64, 562-580; 65, 375-390. | MR | Zbl
,[22] Properties of Tauberian operators in Banach spaces, Ph. D. Thesis, Univ. Texas, 1984.
,[23] Functional Operators, Vol.2: The Geometry of Orthogonal spaces, Ann. Math. Stud., 22, Princeton University Press, Princeton N. J., 1950. | Zbl
,[24] For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math., 81 (1985), 329-338. | MR | Zbl
,[25] Generalised semi-Fredholms transformations, J. Austral. Math. Soc., A 34 (1983), 60-70. | MR | Zbl
,[26] Multivalued Semi-Fredholm Operators in Normed Linear Spaces, Ph. D. THESIS, Univ. Cape Town, 2001.
,[27] The generalized Fredholm operators, Trans. Amer. Math. Soc., 219 (1976), 313-326. | MR | Zbl
,