Rosenthal and semi-Tauberian linear relations in normed spaces
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 707-722.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The class of Rosenthal linear relations in normed spaces is introduced and studied in terms of their first and second conjugates. We investigate the relationship between a Rosenthal linear relation and its conjugate. In this paper, we also study the semi-Tauberian linear relations following the pattern followed for the study of the Tauberian linear relations. We prove that the semi-Tauberian linear relations share some of the properties of Tauberian linear relations and they are related to Rosenthal linear relations in the same way as Tauberian linear relations are related to weakly compact linear relations. We describe examples and investigate special cases: in particular, $F_{+}$ and strictly singular linear relations.
Si introduce la classe delle relazioni lineari di Rosenthal in spazi normati e si studia in termini dei suoi coniugati primi e secondi. Si analizza il rapporto fra una relazione lineare di Rosenthal e il suo coniugato. Nell'articolo si studiano inoltre le relazioni lineari semi-Tauberiane che seguono il modello adottato nello studio delle relazioni lineari Tauberiane. Si dimostra che le relazioni lineari semi-Tauberiane condividono alcune delle proprietà delle relazioni lineari Tauberiane e che stanno in relazione alle relazioni lineari di Rosenthal nello stesso modo in cui le relazioni lineari Tauberiane si trovano in relazione con le relazioni lineari debolmente com- patte. Si descrivono esempi e si discutono casi particolari, $F_{+}$ e le relazioni lineari strettamente singolari.
@article{BUMI_2005_8_8B_3_a11,
     author = {\'Alvarez, Teresa and Mart{\'\i}nez-Abej\'on, Antonio},
     title = {Rosenthal and {semi-Tauberian} linear relations in normed spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {707--722},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1179.47019},
     mrnumber = {844105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/}
}
TY  - JOUR
AU  - Álvarez, Teresa
AU  - Martínez-Abejón, Antonio
TI  - Rosenthal and semi-Tauberian linear relations in normed spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 707
EP  - 722
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/
LA  - en
ID  - BUMI_2005_8_8B_3_a11
ER  - 
%0 Journal Article
%A Álvarez, Teresa
%A Martínez-Abejón, Antonio
%T Rosenthal and semi-Tauberian linear relations in normed spaces
%J Bollettino della Unione matematica italiana
%D 2005
%P 707-722
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/
%G en
%F BUMI_2005_8_8B_3_a11
Álvarez, Teresa; Martínez-Abejón, Antonio. Rosenthal and semi-Tauberian linear relations in normed spaces. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 707-722. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a11/

[1] T. Álvarez - V. M. Onieva , A note on three-space ideals of Banach spaces, Proceedings of the Tenth Spanish-Portuguese Conference on Mathematics, III (Murcia, 1985), Univ. Murcia (1985), 251-254. | MR

[2] T. Álvarez - R. W. Cross - A. I. Gouveia , Adjoint characterisations of unbounded weakly compact, weakly completely continuous and unconditionally converging operators, Studia Math., 113 (3) (1995), 293-298. | fulltext mini-dml | MR | Zbl

[3] T. Álvarez - R. W. Cross - M. González , Factorization of unbounded thin and cothin operators, Quaestiones Math., 22 (1999), 519-529. | MR | Zbl

[4] J. P. Aubin - A. Cellina , Differential Inclusions, Springer-Verlag, New York, 1984. | MR | Zbl

[5] J. P. Aubin - H. Frankowska , Set Valued Analysis, Birkhauser, Boston, 1990. | MR | Zbl

[6] F. Bombal - B. Hernando , A double-dual characterisation of Rosenthal and semi-Tauberian operators, Proc. Royal Irish Acad., Ser. A, 95 (1995), 69-75. | MR | Zbl

[7] F. H. Clarke , Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983. | MR | Zbl

[8] R. W. Cross , Properties of Some Norm Related Functions of Unbounded Linear Operators, Math. Z., 199 (1988), 285-303. | MR | Zbl

[9] R. W. Cross , A characterisation of almost reflexive normed spaces, Proc. Royal Irish Acad., Ser. A 92 (1992), 225-228. | MR | Zbl

[10] R. W. Cross , Multivalued Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, 213, Marcel Dekker, New York, 1998. | MR | Zbl

[11] W. J. Davis - T. Figiel - W. B. Johnson - A. Pelczynski , Factoring weakly compact operators, J. Funct. Anal., 17 (1974), 311-327. | MR | Zbl

[12] A. Favini - A. Yagi , Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura. Appl. (4) 163 (1993), 353-384. | MR | Zbl

[13] D. H. J. Garling - A. Wilansky , On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Camb. Phil. Soc., 71 (1972), 495-497. | MR | Zbl

[14] M. González - V. M. Onieva , Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A 88 A (1988), 35- 38. | MR | Zbl

[15] M. González , Dual results of factorization for operators, Ann. Acad. Sc. Fenn., Ser. A. I. Math. 18 (1993), 3-11. | MR | Zbl

[16] M. Gromov , Partial differential relations, Springer-Verlag, Berlin, 1986. | MR | Zbl

[17] B. Hernando , Some Properties of the Second Conjugate of a Tauberian operator, J. Math. Anal. Appl., 228 (1998), 60-65. | MR | Zbl

[18] J. J. Kalton - A. Wilansky , Tauberian operators in Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255. | MR | Zbl

[19] C. Kuratowski , Topologie I, Polska Akademia Nauk. Warsaw, 1952. | Zbl

[20] J. Lindenstrauss - L. Tzafriri , Classical Banach spaces I, Springer-Verlag, Berlin, 1977. | MR | Zbl

[21] E. Michael , Continuous selections I, II, III, Annals of Math., 63, 361-381; 64, 562-580; 65, 375-390. | MR | Zbl

[22] R. Neidinger , Properties of Tauberian operators in Banach spaces, Ph. D. Thesis, Univ. Texas, 1984.

[23] J. Von Neumann , Functional Operators, Vol.2: The Geometry of Orthogonal spaces, Ann. Math. Stud., 22, Princeton University Press, Princeton N. J., 1950. | Zbl

[24] W. Schachermayer , For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math., 81 (1985), 329-338. | MR | Zbl

[25] D. G. Tacon , Generalised semi-Fredholms transformations, J. Austral. Math. Soc., A 34 (1983), 60-70. | MR | Zbl

[26] D. Wilcox , Multivalued Semi-Fredholm Operators in Normed Linear Spaces, Ph. D. THESIS, Univ. Cape Town, 2001.

[27] K. W. Yang , The generalized Fredholm operators, Trans. Amer. Math. Soc., 219 (1976), 313-326. | MR | Zbl