Fenomeni di concentrazione per energie di tipo Ginzburg-Landau
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 397-414
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We discuss the asymptotic behaviour of energies of Ginzburg-Landau type, for maps from $\mathbb{R}^{n+k}$ into $\mathbb{R}^{k}$, and when the growth exponent $p$ is strictly larger than $k$. We illustrate a compactness and $\Gamma$-convergence result, with respect to a suitable topology on the Jacobians, seen as $n$-dimensional currents. The limit energy is defined on the class of $n$-integral boundaries $M$, and its density depends locally on the multiplicity of $M$ through a family of optimal profile constants.
@article{BUMI_2005_8_8B_2_a6,
author = {Fragal\`a, Ilaria},
title = {Fenomeni di concentrazione per energie di tipo {Ginzburg-Landau}},
journal = {Bollettino della Unione matematica italiana},
pages = {397--414},
publisher = {mathdoc},
volume = {Ser. 8, 8B},
number = {2},
year = {2005},
zbl = {1182.49003},
mrnumber = {MR2149391},
language = {it},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a6/}
}
Fragalà, Ilaria. Fenomeni di concentrazione per energie di tipo Ginzburg-Landau. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 397-414. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a6/