Strutture subriemanniane in alcuni problemi di Analisi
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 273-298.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.
We present some problems, ideas and techniques arising in the theory of Partial Differential Equations of Second Order with non-negative characteristic form and with underlying sub-riemannian structures. We show their development starting from the basic properties of classical harmonic and caloric functions. We stress their relationship with abstract potential theory and local regularity theory of solutions.
@article{BUMI_2005_8_8B_2_a0,
     author = {Lanconelli, Ermanno},
     title = {Strutture subriemanniane in alcuni problemi di {Analisi}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {273--298},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {2},
     year = {2005},
     zbl = {1182.31013},
     mrnumber = {542943},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a0/}
}
TY  - JOUR
AU  - Lanconelli, Ermanno
TI  - Strutture subriemanniane in alcuni problemi di Analisi
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 273
EP  - 298
VL  - 8B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a0/
LA  - it
ID  - BUMI_2005_8_8B_2_a0
ER  - 
%0 Journal Article
%A Lanconelli, Ermanno
%T Strutture subriemanniane in alcuni problemi di Analisi
%J Bollettino della Unione matematica italiana
%D 2005
%P 273-298
%V 8B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a0/
%G it
%F BUMI_2005_8_8B_2_a0
Lanconelli, Ermanno. Strutture subriemanniane in alcuni problemi di Analisi. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 273-298. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a0/

[1] K. Amano , Maximum Principle for degenerate elliptic-parabolic operators, Ind. Univ. Math. J., 28, no. 4 (1979), 545-557. | MR | Zbl

[2] E. Bedford - B. Gaveau , Hypersurfaces with bounded Levi form, Ind. Univ. Mat. J, 27, no. 5 (1978), 867-873. | MR | Zbl

[3] J. M. Bony , Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptic dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. | fulltext mini-dml | MR | Zbl

[4] M. Biroli - U. Mosco , Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 6 (1995), 37-44. | MR | Zbl

[5] C. Costantinescu - A. Cornea , Potential Theory on Harmonic Spaces, Springer-Verlag Berlin Heidelberg New York 1972. | MR | Zbl

[6] G. Citti , $C^\infty$-regularity of solutions of the Levi equation, Ann. Inst. H. Poincaré, Anal. Non Linaire, 15, no. 4 (1998), 517-534. | fulltext mini-dml | MR | Zbl

[7] G. Citti - E. Lanconelli - A. Montanari , Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Mathematica, 188 (2002), 87-128. | MR | Zbl

[8] G. Citti - A. Montanari , $C^\infty$-regularity of solutions of an equation of Levi’s type in $\mathbb{R}^{2N+1}$, Ann. Mat. Pura Appl., 180 (2001), 27-58. | MR | Zbl

[9] E. De Giorgi , Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3, 6 (1957), 25-43. | MR | Zbl

[10] M. Derridj , Une problème aux limite pour une classe d’opérateur du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble), 21 (1971), 99-148. | fulltext mini-dml | MR | Zbl

[11] G. Fichera , Sulle equazioni differenziali lineari ellitico-paraboliche del secondo ordine, Atti Accad, Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30. | MR | Zbl

[12] G. B. Folland , Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. | MR | Zbl

[13] B. Franchi - E. Lanconelli , De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend Cl. Sci. Fis. Mat. Natur., 72, no. 5 (1983), 273-277. | MR | Zbl

[14] B. Franchi - E. Lanconelli , Une métrique associée à une classe d’opérateurs elliptiques dégénerés, Proceedings of the meeting «Linear Partial and Pseudo Differential Operators», Torino (1982), Rend. Sem. Mat. Univ. e Politec. Special Issue (1984), 105-114. | MR | Zbl

[15] B. Franchi - E. Lanconelli , Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10, no. 6 (1983), 523-541. | fulltext mini-dml | MR | Zbl

[16] B. Franchi - G. Lu - R. Wheeden , A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices (1996), 1-14. | MR | Zbl

[17] A. Grigor'Yan , The heat equation on non-compact Riemannian maniflods, Matem. Sbornik, 182 (1991), 55-87. Engl. Transl. Math USSR Sb., 72 (1992), 47-77. | Zbl

[18] N. Garofalo - D. H. Nhieu , Isoperimetric and Sobolev inequalty for Carnot-Carathéodory spaces and the existence of minimal sufaces, Comm. Pure Appl. Math., 10 (1996), 1153-1196. | Zbl

[19] J. Hadamard , Extension à l'èquation de la chaleur d'un théorème de A. Harnack, Rend. Circ. Mat. Palermo, 3, no. 2 (1954), 337-346. | MR | Zbl

[20] P. Hajlasz - P. Koskela , Sobolev met Poincaré, Memoirs Amer. Math. Soc., 688 (2000). | MR | Zbl

[21] L. Hormander , Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl

[22] R. Howe , On the rôle of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., 3, no. 2 (1980), 821-843. | fulltext mini-dml | MR | Zbl

[23] D. Jerison , The Poincaré inequality for vector fields satisfying Hormander condition, Duke Math. J., 53 (1986), 503-523. | fulltext mini-dml | MR | Zbl

[24] D. Jerison - J. M. Lee , Intrinsic CR normal coordinates and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. | MR | Zbl

[25] D. Jerison - J. M. Lee , Extremals of the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Diff. Geom., 29 (1989), 303-343. | fulltext mini-dml | MR | Zbl

[26] A. Kolmogorov , Zur Theorie der Brownschen Bewegung, Ann. Math., II Ser., 35 (1934), 116-117. | MR | Zbl

[27] E. Lanconelli , Regolaritá hölderiana delle soluzioni deboli di certe equazioni ellittiche fortemente degeneri, Seminario di Analisi Matematica Ist. Mat. Univ. Bologna (1981-1982), IX.1.-IX.27.

[28] E. Lanconelli - A. E. Kogoj , X-Elliptic Operators and X-Control Distances, Ricerche di Matematica, Napoli, II Special Issue in Memory of Ennio De Giorgi, 38 (2000), 223-243. | MR | Zbl

[29] E. Lanconelli - D. Morbidelli , On the Poincaré inequality for vector fields, Arkiv för Matematik, 38 (2000), 327-342. | MR | Zbl

[30] E. Lanconelli - S. Polidoro , On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Pol. Torino, 52, no. 1 (1994), 29-63. | MR | Zbl

[31] E. Lanconelli - A. Pascucci - S. Polidoro , Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in «Nonlinear Problems in Mathematical Physics and Related Topics Vol. II In Honor of Professor O. A. Ladyzhenskaya» International Mathematical Series Kluwer Ed. (2002), 243-265. | MR | Zbl

[32] F. Lascialfari - A. Montanari , Smooth regularity for solutions of the Levi Monge-Ampère equation, Rend. Mat. Acc. Naz. Lincei, 12 (2001), 115-123. | MR | Zbl

[33] A. Malchiodi - F. Uguzzoni , A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl., 81 (2002), 983-997. | MR | Zbl

[34] A. Montanari - E. Lanconelli , Pseudoconvex Fully Nonlinear Partial Differential Operators. Strong Comparison Theorems, J. Differential Equations, 202 (2004), 306-331. | MR | Zbl

[35] A. Montanari - D. Morbidelli , Balls defined by nonsmooth vector fields and the Poincaré inequality, Annales Inst. Fourier (Grenoble), 54, 2 (2004), 327-339. | fulltext mini-dml | MR | Zbl

[36] J. Moser , On Harnack’s Theoreme for Elliptic Differential equations, Comm. Pure Appl. Math., 24, 6 (1961), 577-591. | MR | Zbl

[37] J. Moser , On a pointwise Estimate for Parabolic Differential Equations, Comm. Pure Appl. Math., 24 (1971), 727-740. | MR | Zbl

[38] A. Nagel - E. M. Stein - S. Wainger , Balls and metrics defined by vectors fields I: Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl

[39] L. Nirenberg , A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6, no. 6 (1953), 167-177. | MR | Zbl

[40] O. A. Oleinik - E. V. Radkevic , Second Order Equations With Nonnegative Characteristic Form, American Mathematical Society, Providence, Rhode Island (1973). Translated from Itogi Nauki-Serija Matematika (1971). | MR

[41] M. Picone , Maggiorazioni degli integrali di equazioni lineari ellittico-paraboliche alle derivate parziali del secondo ordine, Rend. Accad. Naz. Lincei., 5, no. 6 (1927), 138-143.

[42] M. Picone , Maggiorazione degli integrali delle equazioni totalmente paraboliche del secodno ordine, Annali Mat. Pura Appl., 74 (1929), 145-192. | MR

[43] M. Picone , Nuove formule di maggiorazione per gli integrali delle equazioni lineari alle derivate parziali del secondo ordine ellittico-paraboliche, Atti. Accad. Naz. Lincei, 28, no. 6 (1938), 331-338. | Zbl

[44] B. Pini , Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova, 23 (1954), 422-434. | fulltext mini-dml | MR | Zbl

[45] R. Phillips - L. Sarason , Elliptic-parabolic equations of the second order, J. Math. Mech., 17 (1967/1968), 891-917. | MR | Zbl

[46] S. Polidoro - A. Pascucci , The Moser iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6, 2 (2004), 1-23. | MR | Zbl

[47] F. Rampazzo - H. J. Sussmann , Set-valued differentials and a nonsmooth version of Chow’s theorem, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, 2001, IEEE Publications, New York, 3 (2001), 2613- 2618.

[48] L. P. Rothschild - E. M. Stein , Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR | Zbl

[49] L. Saloff-Coste , A note on Poincaré, Sobolev and Harnack inequality, Internat. Math. Res. Notices (1992), 27-38. | MR | Zbl

[50] L. Saloff-Coste , Aspects of Sobolev-type inequalities, London Math. Society, Lectures Note Series 289, Cambridge University Press (2002). | MR | Zbl

[51] Z. Slodkowki - G. Tomassini , Weak solutions for the Levi equation and envelope of holomorphy, Ind. Univ. Mat. J., 101, no. 2 (1991), 392-407. | MR | Zbl

[52] Z. Slodkowski - G. Tomassini , The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. of Math., 116 (1994), 479- 499. | MR | Zbl

[53] E. M. Stein , Harmonic Analisys: real variable methods, orthogonality and oscillatory integral, Priceton Universty Press, Princeton, N.J (1978). | Zbl

[54] G. Stampacchia , Le Probléme de Dirichlet pour les équations elliptiqes du second ordre á coefficients discontinues, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. | fulltext mini-dml | MR | Zbl

[55] G. Tomassini , Geometric properties of the solutions of the Levi equation, Rend. Sem. Mat. Fis. Milano, 57 (1987), 103-108. | MR | Zbl

[56] G. Tomassini , Geometric properties of solutions of the Levi Equation, Ann. Mat. Pura Appl., 27, no. 5 (1988), 331-334. | MR | Zbl

[57] G. Tomassini , Nonlinear equations related to the Levi form, Rend. Circ. Mat. Palermo, 40 (1991), 281-297. | MR | Zbl