Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2005_8_8B_1_a7, author = {Perotto, Simona}, title = {Anisotropic mesh adaption: application to computational fluid dynamics}, journal = {Bollettino della Unione matematica italiana}, pages = {145--165}, publisher = {mathdoc}, volume = {Ser. 8, 8B}, number = {1}, year = {2005}, zbl = {1150.65028}, mrnumber = {1885308}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a7/} }
TY - JOUR AU - Perotto, Simona TI - Anisotropic mesh adaption: application to computational fluid dynamics JO - Bollettino della Unione matematica italiana PY - 2005 SP - 145 EP - 165 VL - 8B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a7/ LA - en ID - BUMI_2005_8_8B_1_a7 ER -
Perotto, Simona. Anisotropic mesh adaption: application to computational fluid dynamics. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 145-165. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a7/
[1] A posteriori error estimation in finite element analysis, John Wiley & Sons, Inc., New-York, 2000. | MR | Zbl
- ,[2] Adaptive finite element computational fluid dynamics using an anisotropic error estimator, Comput. Methods Appl. Mech. Engrg., 182 (2000), 379-400. | MR | Zbl
- - - - ,[3] Anisotropic finite elements: local estimates and applications, Book Series: Advances in Numerical Mathematics, Teubner, Stuttgart, 1999. | MR | Zbl
,[4] Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math., 74 (1996), 261-282. | MR | Zbl
- ,[5] A posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., 12 (1978), 1597-1615. | Zbl
- ,[6] Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, no. 170 (1985), 283-301. | MR | Zbl
- ,[7] An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102. | MR | Zbl
- ,[8] Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4 (1994), 571-587. | MR | Zbl
- ,[9] Streamline upwind / Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259. | MR | Zbl
- ,[10] The finite element method for elliptic problems, North-Holland Publishing Company, Amsterdam, 1978. | MR | Zbl
,[11] Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 2 (1975), 77-84. | fulltext mini-dml | MR | Zbl
,[12] Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187 (2003) 22-46. | Zbl
- ,[13] On optimal triangular meshes for minimizing the gradient error, Numer. Math., 59 (1991), 321-348. | MR | Zbl
- ,[14] An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52 (1989), 495-508. | MR | Zbl
- ,[15] Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp., 60 (1993), 167-188. | MR | Zbl
- ,[16] Introduction to adaptive methods for differential equations, Acta Numerica, (1995), 105-158. | MR | Zbl
- - - ,[17] New anisotropic a priori error estimates, Numer. Math., 89 (2001), 641-667. | MR | Zbl
- ,[18] Anisotropic error estimates for elliptic problems, Numer. Math., 94 (2003), 67-92. | MR | Zbl
- ,[19] Anisotropic mesh adaptation in Computational Fluid Dynamics: application to the advection-diffusion-reaction and the Stokes problems, to appear in Appl. Num. Math. (2004). | MR | Zbl
- - ,[20] An anisotropic a-posteriori error estimate for a convection-diffusion problem, Comput. Visual. Sci., 4 (2001), 99-104. | MR | Zbl
- - ,[21] Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 105 (1993), 285-298. | MR | Zbl
- ,[22] Error analysis of some GLS methods for elasticity equations, SIAM J. Numer. Anal., 28 (1991), 1680-1697. | MR | Zbl
- ,[23] Continuous metrics and mesh optimization, submitted for the publication in Appl. Numer. Math., (2003).
- - - ,[24] Delaunay triangulation and meshing-application to finite element, Editions Hermes, Paris, 1998. | MR | Zbl
- ,[25] Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numerica, 11 (2002), 145-236. | MR | Zbl
- ,[26] Anisotropic mesh adaptation: a step towards a mesh-independent and user-independent CFD, in Barriers and Challenges in Computational Fluid Dynamics, Kluwer Acad. Publ., 1998, 99-117. | MR | Zbl
- - - - ,[27] BAMG: bidimensional anisotropic mesh generator, (1998). http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm
,[28] A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equalorder interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99. | MR | Zbl
- - ,[29] A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), 173-189. | MR | Zbl
- - ,[30] A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes, Ph.D. thesis, Fakultät für Mathematik der Technischen Universität Chemnitz, Chemnitz, 1999. | Zbl
,[31] Non-homogeneous boundary value problem and application, Volume I. Springer-Verlag, Berlin, 1972. | MR | Zbl
- ,[32] Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and Stokes problems, SIAM J. Numer. Anal., 41, no. 3 (2003), 1131-1162. | MR | Zbl
- - ,[33] On the performance of high aspect ratio elements for incompressible flows, Comput. Methods Appl. Mech. Engrg., 188 (2000), 269-287. | Zbl
,[34] Goal-oriented error estimation and adaptivity for the finite element method, Computers Math. Applic., 41, no. 5-6 (2001), 735-756. | MR | Zbl
- ,[35] An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems, SIAM J. Sci. Comput., 24, no. 4 (2003), 1328-1355. | MR | Zbl
,[36] Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493. | MR | Zbl
- ,[37] An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), 373-398. | MR | Zbl
,[38] A review of a posteriori error estimation and adaptive mesh-refinement techniques, B. G. Teubner, Stuttgart, 1996. | Zbl
,[39] A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24 (1987), 337-357. | MR | Zbl
- ,[40] The superconvergent patch recovery and a posteriori error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Eng., 33 (1992), 1331-1364. | MR | Zbl
- ,[41] The superconvergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity, Int. J. Numer. Methods Eng., 33 (1992), 1365-1382. | MR | Zbl
- ,