Critical length for a Beurling type theorem
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 251-258.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In a recent paper [3] C. Baiocchi, V. Komornik and P. Loreti obtained a generalisation of Parseval's identity by means of divided differences. We give here a proof of the optimality of that theorem.
In un lavoro recente [3] C. Baiocchi, V. Komornik e P. Loreti hanno ottenuto una generalizzazione dell'identità di Parseval utilizzando delle differenze divise. Noi dimostriamo l'ottimalità del loro teorema.
@article{BUMI_2005_8_8B_1_a11,
     author = {Mehrenberger, Michel},
     title = {Critical length for a {Beurling} type theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {1},
     year = {2005},
     zbl = {1140.42013},
     mrnumber = {1850184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/}
}
TY  - JOUR
AU  - Mehrenberger, Michel
TI  - Critical length for a Beurling type theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 251
EP  - 258
VL  - 8B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/
LA  - en
ID  - BUMI_2005_8_8B_1_a11
ER  - 
%0 Journal Article
%A Mehrenberger, Michel
%T Critical length for a Beurling type theorem
%J Bollettino della Unione matematica italiana
%D 2005
%P 251-258
%V 8B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/
%G en
%F BUMI_2005_8_8B_1_a11
Mehrenberger, Michel. Critical length for a Beurling type theorem. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 251-258. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/

[1] S. A. Avdonin - S. A. Ivanov, Exponential Riesz bases of subspaces and divided differences, St. Petersburg Math. J., 13 (3) (2002), 339-351. | MR | Zbl

[2] C. Baiocchi - V. Komornik - P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8), 2, no. 1 (1999), 33-63. | fulltext bdim | fulltext mini-dml | MR | Zbl

[3] C. Baiocchi - V. Komornik - P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (1-2) (2000), 55-95. | MR | Zbl

[4] K. Gröchenig - H. Razafinjatovo, On Landau’s necessary density conditions for sampling and interpolation of band-limited functions, J. London Math. Soc. (2), 54 (1996), 557-565. | MR | Zbl

[5] H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117 (1967), 37-52. | MR | Zbl

[6] K. Seip, On the Connection between Exponential Bases and Certains Related Sequences in $L^2 (2\pi, \pi)$, Journal of Functional Analysis, 130 (1995), 131-160. | MR | Zbl

[7] D. Ullrich, Divided differences and system of nonharmonic Fourier series, Proc. Amer. Math. Soc., 80 (1980), 47-57. | MR | Zbl

[8] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. | MR | Zbl