Critical length for a Beurling type theorem
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 251-258

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In a recent paper [3] C. Baiocchi, V. Komornik and P. Loreti obtained a generalisation of Parseval's identity by means of divided differences. We give here a proof of the optimality of that theorem.
@article{BUMI_2005_8_8B_1_a11,
     author = {Mehrenberger, Michel},
     title = {Critical length for a {Beurling} type theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {1},
     year = {2005},
     zbl = {1140.42013},
     mrnumber = {MR2122984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/}
}
TY  - JOUR
AU  - Mehrenberger, Michel
TI  - Critical length for a Beurling type theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 251
EP  - 258
VL  - 8B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/
LA  - en
ID  - BUMI_2005_8_8B_1_a11
ER  - 
%0 Journal Article
%A Mehrenberger, Michel
%T Critical length for a Beurling type theorem
%J Bollettino della Unione matematica italiana
%D 2005
%P 251-258
%V 8B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/
%G en
%F BUMI_2005_8_8B_1_a11
Mehrenberger, Michel. Critical length for a Beurling type theorem. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 251-258. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a11/