Soluzioni periodiche di PDEs Hamiltoniane
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 647-661.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando nuovamente una riduzione di tipo Lyapunov-Schmidt.
New existence and multiplicity results of small amplitude periodic solutions for nonlinear Hamiltonian PDEs are presented. We obtain periodic solutions of «completely resonant» equations with any general nonlinearity thanks to a Lyapunov-Schmidt reduction, variational in nature, and min-max topological arguments. For «non resonant» equations we prove existence of periodic solutions of Birkhoff-Lewis type, by means of a suitable Birkhoff normal form and implementing again a Lyapunov-Schmidt variational reduction.
@article{BUMI_2004_8_7B_3_a6,
     author = {Berti, Massimiliano},
     title = {Soluzioni periodiche di {PDEs} {Hamiltoniane}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {647--661},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1182.35165},
     mrnumber = {879691},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a6/}
}
TY  - JOUR
AU  - Berti, Massimiliano
TI  - Soluzioni periodiche di PDEs Hamiltoniane
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 647
EP  - 661
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a6/
LA  - it
ID  - BUMI_2004_8_7B_3_a6
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%T Soluzioni periodiche di PDEs Hamiltoniane
%J Bollettino della Unione matematica italiana
%D 2004
%P 647-661
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a6/
%G it
%F BUMI_2004_8_7B_3_a6
Berti, Massimiliano. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 647-661. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a6/

[1] A. Ambrosetti-V. Coti Zelati-I. Ekeland, Symmetry breaking in Hamiltonian systems, Journal Diff. Equat., 67 (1987), 165-184. | MR | Zbl

[2] A. Ambrosetti-P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, Journ. Func. Anal, 14 (1973), 349-381. | MR | Zbl

[3] D. Bambusi, Lyapunov Center Theorems for some nonlinear PDEs: a simple proof, Ann. Sc. Norm. Sup. di Pisa, Ser. IV, vol. XXIX, fasc. 4, 2000. | fulltext mini-dml | Zbl

[4] D. Bambusi-M. Berti, A Birkhoof-Lewis type Theorem for some Hamiltonian PDEs, preprint SISSA, available at http://www.math.utexas.edu/mp-arc. | fulltext mini-dml | MR | Zbl

[5] D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234 (2003), 253-285. | MR | Zbl

[6] D. Bambusi-B. Grebert, Forme normale pour NLS en dimension quelconque, C.R. Acad. Sci. Paris Ser., 1, 337 (2003), 409-414. | MR | Zbl

[7] D. Bambusi-S. Paleari, Families of periodic solutions of resonant PDEs, J. Nonlinear Sci., 11 (2001), 69-87. | MR | Zbl

[8] D. Bambusi-S. Paleari, Families of periodic orbits for some PDE's in higher dimensions, Comm. Pure and Appl. Analysis, Vol. 1, n. 4, 2002. | MR | Zbl

[9] L. Biasco-L. Chierchia-E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem, 170, n. 2 (2003), 91-135. | MR | Zbl

[10] M. Berti-L. Biasco-E. Valdinoci, Periodic orbits close to elliptic tori and applications to the three body problem, to appear on Ann. Sc. Norm. Sup. di Pisa, 2004. | MR | Zbl

[11] M. Berti-P. Bolle, Periodic solutions of Nonlinear wave equations with general nonlineairties, Commun. Math. Phys., 243 (2003), 315-328. | MR | Zbl

[12] M. Berti-P. Bolle, Multiplicity of periodic solutions of Nonlinear wave equations, Nonlinear Analysis, TMA, 56 n. 7 (2004), 1011-1046. | MR | Zbl

[13] G. D. Birkhoof-D. C. Lewis, On the periodic motions near a given periodic motion of a dynamical system, Ann. Mat., 12 (1934), 117-133. | Jbk 59.0733.05 | MR

[14] J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. and Func. Anal., vol. 5, n. 4, 1995. | MR | Zbl

[15] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439. | MR | Zbl

[16] L. Chierchia-J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys., 211, no. 2 (2000), 497-525. | MR | Zbl

[17] C. Conley-E. Zehnder, An index theory for periodic solutions of a Hamiltonian system, Lecture Notes in Mathematics 1007, Springer, 1983, 132-145. | MR | Zbl

[18] W. Craig, Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, 9, Société Mathématique de France, Paris, 2000. | MR | Zbl

[19] W. Craig-E. Wayne, Newton's method and periodic solutions of nonlinear wave equation, Comm. Pure and Appl. Math, vol. XLVI (1993), 1409-1498. | MR | Zbl

[20] W. Craig-E. Wayne, Nonlinear waves and the $1 : 1 : 2$ resonance, Singular limits of dispersive waves (Lyon, 1991), 297-313, NATO Adv. Sci. Inst. Ser. B Phys., 320, Plenum, New York, 1994. | MR | Zbl

[21] E. R. Fadell-P. Rabinowitz, Generalized cohomological index theories for the group actions with an application to bifurcations question for Hamiltonian systems, Inv. Math., 45 (1978), 139-174. | MR | Zbl

[22] G. Gentile-V. Mastropietro, Construction of periodic solutions of the nonlinear wave equation with Dirichlet boundary conditions by the Lindstedt series method, to appear on Journal Math. Pures Appl. | MR | Zbl

[23] D. C. Lewis, Sulle oscillazioni periodiche di un sistema dinamico, Atti Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 19 (1934), 234-237. | Zbl

[24] A. M. Lyapunov, Problème général de la stabilité du mouvement, Ann. Sc. Fac. Toulouse, 2 (1907), 203-474. | MR

[25] B. V. Lidskij-E. I. Shulman, Periodic solutions of the equation $u_{tt} - u_{xx} + u^3 = 0$, Funct. Anal. Appl., 22 (1980), 332-333. | Zbl

[26] S. B. Kuksin, Perturbation of conditionally periodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, Ser. Mat. 52, no. 1 (1988), 41-63. | MR | Zbl

[27] J. Moser, Periodic orbits near an Equilibrium and a Theorem by Alan Weinstein, Comm. on Pure and Appl. Math., vol. XXIX, 1976. | MR | Zbl

[28] J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoof, Geometry and Topology, Lectures Notes in Math., 597 (1977), 464-494. | MR | Zbl

[29] H. Poincaré, Les Méthodes nouvelles de la Mécanique Céleste, Gauthier Villars, Paris, 1892. | Jbk 30.0834.08

[30] J. Pöschel, A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 23 (1996), 119-148. | fulltext mini-dml | MR | Zbl

[31] J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 22 (2002), 1537-1549. | MR | Zbl

[32] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65. | MR | Zbl

[33] E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 127, no. 3 (1998), 479-528. | fulltext mini-dml | MR | Zbl

[34] A. Weinstein, Normal modes for Nonlinear Hamiltonian Systems, Inv. Math, 20 (1973), 47-57. | MR | Zbl