Investigation of smooth functions and analytic sets using fractal dimensions
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 637-646
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We start from the following problem: given a function $f \colon [0, 1] \to [0, 1]$ what can be said about the set of points in the range where level sets are «big» according to an opportune definition. This yields the necessity of an analysis of the structure of level sets of $C^{n}$ functions. We investigate the analogous problem for $C^{n, a}$ functions. These are in a certain way intermediate between $C^{n}$ and $C^{n+1}$ functions. The results involve a mixture of Real Analysis, Geometric Measure Theory and Classical Descriptive Set Theory.
@article{BUMI_2004_8_7B_3_a5,
author = {D'Aniello, Emma},
title = {Investigation of smooth functions and analytic sets using fractal dimensions},
journal = {Bollettino della Unione matematica italiana},
pages = {637--646},
year = {2004},
volume = {Ser. 8, 7B},
number = {3},
zbl = {1178.26005},
mrnumber = {MR2101655},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/}
}
TY - JOUR AU - D'Aniello, Emma TI - Investigation of smooth functions and analytic sets using fractal dimensions JO - Bollettino della Unione matematica italiana PY - 2004 SP - 637 EP - 646 VL - 7B IS - 3 UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/ LA - en ID - BUMI_2004_8_7B_3_a5 ER -
D'Aniello, Emma. Investigation of smooth functions and analytic sets using fractal dimensions. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 637-646. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/