Investigation of smooth functions and analytic sets using fractal dimensions
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 637-646.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We start from the following problem: given a function $f \colon [0, 1] \to [0, 1]$ what can be said about the set of points in the range where level sets are «big» according to an opportune definition. This yields the necessity of an analysis of the structure of level sets of $C^{n}$ functions. We investigate the analogous problem for $C^{n, a}$ functions. These are in a certain way intermediate between $C^{n}$ and $C^{n+1}$ functions. The results involve a mixture of Real Analysis, Geometric Measure Theory and Classical Descriptive Set Theory.
Si parte dal seguente problema: data una funzione $f \colon [0, 1] \to [0, 1]$, cosa si può dire riguardo l'insieme dei punti nel codominio in cui gli insiemi di livello sono grandi secondo una opportuna definizione. Ciò porta alla necessità di analizzare la struttura degli insiemi di livello per funzioni di classe $C^{n}$. Analogo problema viene affrontato per le funzioni di classe $C^{n, a}$ che sono in un certo senso intermedie fra quelle di classe $C^{n}$ e quelle di classe $C^{n+1}$. I risultati coinvolgono strumenti di analisi reale, teoria geometrica della misura e teoria descrittiva classica degli insiemi.
@article{BUMI_2004_8_7B_3_a5,
     author = {D'Aniello, Emma},
     title = {Investigation of smooth functions and analytic sets using fractal dimensions},
     journal = {Bollettino della Unione matematica italiana},
     pages = {637--646},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1178.26005},
     mrnumber = {64849},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/}
}
TY  - JOUR
AU  - D'Aniello, Emma
TI  - Investigation of smooth functions and analytic sets using fractal dimensions
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 637
EP  - 646
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/
LA  - en
ID  - BUMI_2004_8_7B_3_a5
ER  - 
%0 Journal Article
%A D'Aniello, Emma
%T Investigation of smooth functions and analytic sets using fractal dimensions
%J Bollettino della Unione matematica italiana
%D 2004
%P 637-646
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/
%G en
%F BUMI_2004_8_7B_3_a5
D'Aniello, Emma. Investigation of smooth functions and analytic sets using fractal dimensions. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 637-646. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a5/

[1] S. Banach, Über die Bairesche Kategorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179. | fulltext mini-dml | Zbl

[2] A. S. Besicovitch-S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc., 29 (1954), 449-459. | MR | Zbl

[3] A. M. Bruckner-J. B. Bruckner-B. S. Thomson, Real Analysis, Prentice-Hall, New Jersey, 1997. | Zbl

[4] A. M. Bruckner-K. M. Garg, The level structure of a residual set of continuous functions, Trans. Amer. Math. Soc., 232 (1977), 307-321. | MR | Zbl

[5] A. M. Bruckner-C. Goffman, Differentiability through change of variables, Proc. Amer. Math. Soc., 61 (1976), 235-241. | MR | Zbl

[6] E. D'Aniello-U. B. Darji, On the existence of $C^1$ functions with perfect level sets, Z. Anal. Anwendungen, 19, no. 3 (2000), 847-853. | MR | Zbl

[7] E. D'Aniello-U. B. Darji, $C^n$ functions, Hausdorff measures and analytic sets, Advances in Mathematics, 164 (2001), 117-143. | MR | Zbl

[8] E. D'Aniello, Uncountable level sets of Lipschitz functions and analytic sets, Scientiae Mathematicae Japoncae, 6 (2002), 333-339. | MR | Zbl

[9] E. D'Aniello, Level sets of Hölder functions and Hausdorff measures, Z. Anal. Anwendungen, 21, no. 3 (2002), 1-17. | MR | Zbl

[10] U. B. Darji-M. Morayne, Level sets of a typical $C^n$ function, Proc. Amer. Math. Soc., 127 (1999), 2917-2922. | MR | Zbl

[11] K. Kuratowski, Topology, Volume I, Academic Press, INC., New York, 1966. | MR

[12] M. Laczkovich-D. Preiss, $\alpha$-variation and transformation into $C^n$ functions, Indiana Univ. Math. J., 34, no. 2 (1985), 405-424. | MR | Zbl

[13] V. V. Lebedev, Homeomorphisms of a segment and smoothness of a function, Mat. Zametki, 40, no. 3 (1986), 364-373. | MR | Zbl

[14] S. Mazurkiewicz, Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94. | fulltext mini-dml | Jbk 57.0305.04

[15] S. Mazurkiewicz-W. Sierpinski, Sur un problème concernant les fonctions continues, Fund. Math., 6 (1924), 161-169. | fulltext mini-dml | Jbk 50.0186.01