Weak solutions for a well-posed Hele-Shaw problem
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 397-424.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We analyze existence and uniqueness of weak solutions to the well-posed Hele-Shaw problem under general conditions on the fixed boundaries and non-homogeneous governing equation in the unknown domain and non-homogeneous dynamic condition on the free boundary. Our approach allows us also to minimize the restrictions on the boundary and initial data. We derive several estimates on the solutions in $BV$ spaces, prove a comparison theorem, and show that the solution depends continuously on the initial and boundary data.
Analizziamo l'esistenza e l'unicità di soluzioni deboli del problema ben posto di Hele-Shaw con condizioni generali sul contorno assegnato, equazione governante non-omogenea nel dominio incognito e condizione dinamica non-omogenea a contorno libero. Il nostro approccio permette anche di indebolire le restrizioni sui dati iniziali e di contorno. Otteniamo infine alcune stime per la soluzione negli spazi $BV$, proviamo un teorema di comparazione, e mostriamo che la soluzione dipende in modo continuo dai dati iniziali e di contorno.
@article{BUMI_2004_8_7B_2_a8,
     author = {Antontsev, S. N. and Meirmanov, A. M. and Yurinsky, V. V.},
     title = {Weak solutions for a well-posed {Hele-Shaw} problem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {397--424},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1177.76398},
     mrnumber = {487015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/}
}
TY  - JOUR
AU  - Antontsev, S. N.
AU  - Meirmanov, A. M.
AU  - Yurinsky, V. V.
TI  - Weak solutions for a well-posed Hele-Shaw problem
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 397
EP  - 424
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/
LA  - en
ID  - BUMI_2004_8_7B_2_a8
ER  - 
%0 Journal Article
%A Antontsev, S. N.
%A Meirmanov, A. M.
%A Yurinsky, V. V.
%T Weak solutions for a well-posed Hele-Shaw problem
%J Bollettino della Unione matematica italiana
%D 2004
%P 397-424
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/
%G en
%F BUMI_2004_8_7B_2_a8
Antontsev, S. N.; Meirmanov, A. M.; Yurinsky, V. V. Weak solutions for a well-posed Hele-Shaw problem. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 397-424. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/

[1] A. Damlamian, Some results on the multi-phase Stefan problem, Comm. Part. Diff. Eq., 2 (1977), 1017-1044. | MR | Zbl

[2] C. M. Elliott-V. Janovsky, A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. R. Soc. Edinb., 88A (1981), 97-107. | MR | Zbl

[3] I. G. Götz-B. Zaltzman, Nonincrease of mushy region in nonhomogeneous Stefan problem, Quart. Appl. Math., Vol. XLIX, 4 (1991), 741-746. | MR | Zbl

[4] B. Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows, SIAM J. Math. Anal., 16 (1985), 279-300. | MR | Zbl

[5] S. D. Howison, Complex variable methods in Hele-Shaw moving boundary problems, Eur. J. Appl. Math., 3, 3 (1992), 209-234. | MR | Zbl

[6] S. L. Kamin (KAMENOMOSTSKAYA), On the Stefan problem, Mat. Sb. (N.S.), 53 (1961), 489-514 (Russian). | Zbl

[7] D. Kinderlehrer-G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. | MR | Zbl

[8] S. N. Kruzhkov, First order quasilinear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243. | Zbl

[9] O. A. Ladyzhenskaya-V. A. Solonnikov-N. A. Ural'Tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (English translation: series Transl. Math. Monographs, v. 23, AMS, Providence, 1968.) | Zbl

[10] O. A. Ladyzhenskaya-N. A. Ural'Tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1973. (English ed: Mathematics in Science and Engineering (ed. by R. Bellman), vol. 46, Academic Press, New York, 1968. | Zbl

[11] B. Louro-J. F. Rodrigues, Remarks on the quasisteady one-phase Stefan problem, Proc. R. Soc. Edinb., 102A (1986), 263-275. | MR | Zbl

[12] A. M. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, New York, 1992. | MR | Zbl

[13] J. R. Ockendon-S. D. Howison-A. A. Lacey, Mushy regions in negative squeeze films. (Submitted for publication) | Zbl

[14] O. A. Oleinik, A method of solution of the general Stefan problem, Dokl. Akad. Nauk. SSSR, 135 (1960), 1054-1057, Soviet Math. Dokl., 1 (1960), 1350-1354. | MR | Zbl

[15] M. Primicerio-J. F. Rodrigues, The Hele-Shaw problem with nonlocal injection condition, Kawarada H. (ed.), Proc. Int. Conf. Nonlinear Math. Probl. in Industry, Tokyo, Gakkotosho, Gakuto Int. Ser. Math. Sci. Appl., 2 (1993), 375-390. | MR | Zbl

[16] L. I. Rubinstein, The Stefan Problem, Zvaigne, Riga, 1967. (English ed.: Transl. Math. Monographs, Vol. 27, AMS, Providence, 1971.) | MR | Zbl

[17] A. Visintin, Models of Phase Transitions, Progress in Nonlinear Differential Equations and Their Applications, vol. 28. Birkhäuser, Boston-Basel-Berlin, 1996. | MR | Zbl