Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2004_8_7B_2_a8, author = {Antontsev, S. N. and Meirmanov, A. M. and Yurinsky, V. V.}, title = {Weak solutions for a well-posed {Hele-Shaw} problem}, journal = {Bollettino della Unione matematica italiana}, pages = {397--424}, publisher = {mathdoc}, volume = {Ser. 8, 7B}, number = {2}, year = {2004}, zbl = {1177.76398}, mrnumber = {487015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/} }
TY - JOUR AU - Antontsev, S. N. AU - Meirmanov, A. M. AU - Yurinsky, V. V. TI - Weak solutions for a well-posed Hele-Shaw problem JO - Bollettino della Unione matematica italiana PY - 2004 SP - 397 EP - 424 VL - 7B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/ LA - en ID - BUMI_2004_8_7B_2_a8 ER -
%0 Journal Article %A Antontsev, S. N. %A Meirmanov, A. M. %A Yurinsky, V. V. %T Weak solutions for a well-posed Hele-Shaw problem %J Bollettino della Unione matematica italiana %D 2004 %P 397-424 %V 7B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/ %G en %F BUMI_2004_8_7B_2_a8
Antontsev, S. N.; Meirmanov, A. M.; Yurinsky, V. V. Weak solutions for a well-posed Hele-Shaw problem. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 397-424. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/
[1] Some results on the multi-phase Stefan problem, Comm. Part. Diff. Eq., 2 (1977), 1017-1044. | MR | Zbl
,[2] A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. R. Soc. Edinb., 88A (1981), 97-107. | MR | Zbl
- ,[3] Nonincrease of mushy region in nonhomogeneous Stefan problem, Quart. Appl. Math., Vol. XLIX, 4 (1991), 741-746. | MR | Zbl
- ,[4] Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows, SIAM J. Math. Anal., 16 (1985), 279-300. | MR | Zbl
,[5] Complex variable methods in Hele-Shaw moving boundary problems, Eur. J. Appl. Math., 3, 3 (1992), 209-234. | MR | Zbl
,[6] On the Stefan problem, Mat. Sb. (N.S.), 53 (1961), 489-514 (Russian). | Zbl
(KAMENOMOSTSKAYA),[7] An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. | MR | Zbl
- ,[8] First order quasilinear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243. | Zbl
,[9] Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (English translation: series Transl. Math. Monographs, v. 23, AMS, Providence, 1968.) | Zbl
- - ,[10] Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1973. (English ed: Mathematics in Science and Engineering (ed. by R. Bellman), vol. 46, Academic Press, New York, 1968. | Zbl
- ,[11] Remarks on the quasisteady one-phase Stefan problem, Proc. R. Soc. Edinb., 102A (1986), 263-275. | MR | Zbl
- ,[12] The Stefan Problem, Walter de Gruyter, Berlin, New York, 1992. | MR | Zbl
,[13] Mushy regions in negative squeeze films. (Submitted for publication) | Zbl
- - ,[14] A method of solution of the general Stefan problem, Dokl. Akad. Nauk. SSSR, 135 (1960), 1054-1057, Soviet Math. Dokl., 1 (1960), 1350-1354. | MR | Zbl
,[15] The Hele-Shaw problem with nonlocal injection condition, Kawarada H. (ed.), Proc. Int. Conf. Nonlinear Math. Probl. in Industry, Tokyo, Gakkotosho, Gakuto Int. Ser. Math. Sci. Appl., 2 (1993), 375-390. | MR | Zbl
- ,[16] The Stefan Problem, Zvaigne, Riga, 1967. (English ed.: Transl. Math. Monographs, Vol. 27, AMS, Providence, 1971.) | MR | Zbl
,[17] Models of Phase Transitions, Progress in Nonlinear Differential Equations and Their Applications, vol. 28. Birkhäuser, Boston-Basel-Berlin, 1996. | MR | Zbl
,