Weak solutions for a well-posed Hele-Shaw problem
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 397-424
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We analyze existence and uniqueness of weak solutions to the well-posed Hele-Shaw problem under general conditions on the fixed boundaries and non-homogeneous governing equation in the unknown domain and non-homogeneous dynamic condition on the free boundary. Our approach allows us also to minimize the restrictions on the boundary and initial data. We derive several estimates on the solutions in $BV$ spaces, prove a comparison theorem, and show that the solution depends continuously on the initial and boundary data.
@article{BUMI_2004_8_7B_2_a8,
author = {Antontsev, S. N. and Meirmanov, A. M. and Yurinsky, V. V.},
title = {Weak solutions for a well-posed {Hele-Shaw} problem},
journal = {Bollettino della Unione matematica italiana},
pages = {397--424},
year = {2004},
volume = {Ser. 8, 7B},
number = {2},
zbl = {1177.76398},
mrnumber = {MR2072944},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/}
}
TY - JOUR AU - Antontsev, S. N. AU - Meirmanov, A. M. AU - Yurinsky, V. V. TI - Weak solutions for a well-posed Hele-Shaw problem JO - Bollettino della Unione matematica italiana PY - 2004 SP - 397 EP - 424 VL - 7B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/ LA - en ID - BUMI_2004_8_7B_2_a8 ER -
Antontsev, S. N.; Meirmanov, A. M.; Yurinsky, V. V. Weak solutions for a well-posed Hele-Shaw problem. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 397-424. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a8/