Fibred closed braids with disc-band fibre surfaces
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 433-451.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A classical result by Stallings provides a necessary and sufficient condition to decide whether a given embedded surface $S$ is a fibre in $S^{3}-\partial S$. In this paper it is described how to find a candidate fibre surface for a a link presented as a closed braid. Also it is described an implemented algorithm to find the main ingredients of the necessary and sufficient condition of Stallings, namely presentations of the fundamental groups of the surface and of its complement in $S^{3}$, and an explicit expression of the homomorphism induced in homotopy by the push-off map. The paper ends with a discussion of the particular properties of the presentation of $\pi_1 (S^{3} \setminus S_{W})$.
Un risultato classico di Stallings fornisce una condizione necessaria e sufficiente per stabilire se una data superficie immersa senza autointersezioni in $S^{3}$ è una fibra per $S^{3}-\partial S$. In questo articolo si descrive come trovare una possibile fibra per un link presentato come treccia chiusa. Si descrive anche un algoritmo, implementato al calcolatore, che permette di trovare i principali ingredienti per verificare la condizione necessaria e sufficiente di Stallings, cioè una presentazione del gruppo fondamentale della superficie e del suo complementare in $S^{3}$, e una espressione esplicita dell'omomorfismo indotto in omotopia dalla mappa di push-off. L'articolo termina con una discussione di particolari proprietà della presentazione del gruppo $\pi_1 (S^{3} \setminus S_{W})$.
@article{BUMI_2004_8_7B_2_a10,
     author = {Rampichini, Marta},
     title = {Fibred closed braids with disc-band fibre surfaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {433--451},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1150.57004},
     mrnumber = {375281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a10/}
}
TY  - JOUR
AU  - Rampichini, Marta
TI  - Fibred closed braids with disc-band fibre surfaces
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 433
EP  - 451
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a10/
LA  - en
ID  - BUMI_2004_8_7B_2_a10
ER  - 
%0 Journal Article
%A Rampichini, Marta
%T Fibred closed braids with disc-band fibre surfaces
%J Bollettino della Unione matematica italiana
%D 2004
%P 433-451
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a10/
%G en
%F BUMI_2004_8_7B_2_a10
Rampichini, Marta. Fibred closed braids with disc-band fibre surfaces. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 433-451. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a10/

[1] J. S. Birman, Braids, links and mapping class groups, Annals of Math. Studies 84 (1974), Princeton Univ. Press. | MR | Zbl

[2] J. S. Birman-K. H. Ko-S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. in Math., 139 (1998), 322-353. | MR | Zbl

[3] J. S. Birman-W. W. Menasco, Studying links via closed braids II: On a theorem of Bennequin, Top. Appl., 40 (1991), 71-82. | MR | Zbl

[4] J. S. Birman-W. W. Menasco, Studying links via closed braids VI: A non-finiteness theorem, Pacific J. of Math., 156 (1992), 265-285. | fulltext mini-dml | MR | Zbl

[5] J. S. Birman-R. F. Williams, Knotted periodic orbits in dynamical systems, I: Lorenz's equations, Top., 22 (1983), 47-82. | MR | Zbl

[6] D. Eisenbud-W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Math. Stud. 110, Princeton Univ. Press (1985). | MR | Zbl

[7] D. Gabai, Detecting fibred links in $S^3$, Comment. Math. Helvetici, 61 (1986), 519-555. | MR | Zbl

[8] D. Gabai, Genera of the arborescent links, Memoirs Amer. Math. Soc., 59 (1986), 1-98. | MR | Zbl

[9] D. Gabai, Foliations and genera of links, Top., 23 (1982), 381-394. | MR | Zbl

[10] J. Harer, How to construct all fibered knots and links, Top., 21 (1982), 263-280. | MR | Zbl

[11] K. H. Ko-S. J. Lee, Genera of some clesed $4$-braids, Top. Appl., 78 (1997), 61-77. | MR | Zbl

[12] R. C. Lyndon-P. E. Schupp, Combinatorial Group Theory, Springer, 1977. | MR | Zbl

[13] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies 61. | Zbl

[14] J. M. Montesinos-Amilibia-H. R. Morton, Fibred links from closed braids, Proc. London Math. Soc. (3), 62 (1991), 167-201. | MR | Zbl

[15] H. R. Morton, Infinitely many fibred knots having the same Alexander polynomial, Top.,7 (1978), 101-104. | MR | Zbl

[16] U. Oertel, HOMOLOGY BRANCHED SURFACES: THURSTON'S NORM ON $H_2(M^3)$, in Low dimensional topology and Kleinian groups, London Math. Soc. Lecture Note Ser. 112 (1986) 253-272. | MR | Zbl

[17] M. Rampichini, Exchangeable fibred links, doctoral thesis, Univ. of Milan, Italy (1998).

[18] D. Rolfsen, Knots and links, Math. Lecture Series 7 (1976), Publish or Perish Inc., Berkeley. | MR | Zbl

[19] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helvetici, 58 (1983), 1-37. | MR | Zbl

[20] L. Rudolph, Construction of quasipositive knots and links, I, in Noeuds, tresses et singularités, L'einsegnement Mathematique, 31 (1983), 233-245. | MR | Zbl

[21] L. Rudolph, Special positions for surface bounded by closed braids, Rev. Mat. Iberoamericana, 1 (1985), 93-133. | MR | Zbl

[22] L. Rudolph, Quasipositive plumbing (Construction of quasipositive knots and links, V), Proc. Amer. Math. Soc., 126 (1998), 257-267. | MR | Zbl

[23] J. R. Stallings, On fibering certain $3$-manifolds, in Topology of 3-manifolds and related topics, ed. M. K. Fort, jr., Prentice-Hall inc, 1962, 95-100. | MR

[24] J. R. Stallings, Constructions of fibred knots and links, Proc. Symp. in Pure Math., AMS 32 part 2 (1978), 55-60. | MR | Zbl

[25] J. L. Tollefson-N. Wang, Taut normal surfaces, Topology, 35 (1996), 55-75. | MR | Zbl

[26] P. Xu, The genus of closed $3$-braids, J. Knot Theory Ram., 1 (1992), 303-326. | MR | Zbl