Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2004_8_7B_1_a8, author = {Canuto, Bruno and Kavian, Otared}, title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result}, journal = {Bollettino della Unione matematica italiana}, pages = {207--230}, publisher = {mathdoc}, volume = {Ser. 8, 7B}, number = {1}, year = {2004}, zbl = {1178.35152}, mrnumber = {15185}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/} }
TY - JOUR AU - Canuto, Bruno AU - Kavian, Otared TI - Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result JO - Bollettino della Unione matematica italiana PY - 2004 SP - 207 EP - 230 VL - 7B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/ LA - en ID - BUMI_2004_8_7B_1_a8 ER -
%0 Journal Article %A Canuto, Bruno %A Kavian, Otared %T Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result %J Bollettino della Unione matematica italiana %D 2004 %P 207-230 %V 7B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/ %G en %F BUMI_2004_8_7B_1_a8
Canuto, Bruno; Kavian, Otared. Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/
[1] Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math., 78 (1946), 1-96. | MR | Zbl
,[2] Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056. | MR | Zbl
,[3] Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. in Part. Diff. Equat., 22 (1997), 1009-1027. | MR | Zbl
- ,[4] On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73. | MR
,[5] Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963-986. | MR | Zbl
- :[6] Unique Continuation for Elliptic Operators: A Geometric- Variational Approach, Comm. on Pure and Appl. Math., 40 (1987), 347-366. | MR | Zbl
- ,[7] On determination of a differential equation from its spectral function, Izv. Akad. Nauk. SSSR Ser. Mat., 15 (1951), 309-360; Amer. Math. Soc. Transl. (Ser. 2), 1 (1955), 253-304. | Zbl
- ,[8] Inverse problems for partial differential equations, Applied Math. Sciences, vol. 127, Springer, New York, 1998. | MR | Zbl
,[9] The inverse Sturm-Liouville problem, Mat. Tidsskr., B (1949), 25-30. | MR | Zbl
,[10] Problèmes aux limites dans les équations aux dérivées partielles; Presses de l'Université de Montréal, Montréal 1965. | Zbl
,[11] Reconstructions from boundary measurements; Ann. Math., 128 (1988), 531-577. | Zbl
,[12] An $n$-dimensional Borg-Levinson theorem; Comm. Math. Physics, 115 (1988), 595-605. | fulltext mini-dml | Zbl
- - ,