Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb{R}^{N}$, $N\geq 2$, let $(\lambda_{k})_{k=1}^{\infty}$ and $(\varphi_{k})_{k=1}^{\infty}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text{div} (a(x) \nabla \varphi_{k})+ q(x) \varphi_{k}= \lambda_{k}\varrho (x) \varphi_{k} \text{ in } \Omega, \quad a\frac{\partial}{\partial \mathbf{n}} \varphi_{k}=0 \text{ su } \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_{k})_{k=1}^{\infty}$, $(\varphi_{k|\partial\Omega})_{k=1}^{\infty}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.
@article{BUMI_2004_8_7B_1_a8,
author = {Canuto, Bruno and Kavian, Otared},
title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result},
journal = {Bollettino della Unione matematica italiana},
pages = {207--230},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {1},
year = {2004},
zbl = {1178.35152},
mrnumber = {MR2044267},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/}
}
TY - JOUR AU - Canuto, Bruno AU - Kavian, Otared TI - Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result JO - Bollettino della Unione matematica italiana PY - 2004 SP - 207 EP - 230 VL - 7B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/ LA - en ID - BUMI_2004_8_7B_1_a8 ER -
%0 Journal Article %A Canuto, Bruno %A Kavian, Otared %T Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result %J Bollettino della Unione matematica italiana %D 2004 %P 207-230 %V 7B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/ %G en %F BUMI_2004_8_7B_1_a8
Canuto, Bruno; Kavian, Otared. Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/