Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb{R}^{N}$, $N\geq 2$, let $(\lambda_{k})_{k=1}^{\infty}$ and $(\varphi_{k})_{k=1}^{\infty}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text{div} (a(x) \nabla \varphi_{k})+ q(x) \varphi_{k}= \lambda_{k}\varrho (x) \varphi_{k} \text{ in } \Omega, \quad a\frac{\partial}{\partial \mathbf{n}} \varphi_{k}=0 \text{ su } \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_{k})_{k=1}^{\infty}$, $(\varphi_{k|\partial\Omega})_{k=1}^{\infty}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.
@article{BUMI_2004_8_7B_1_a8,
     author = {Canuto, Bruno and Kavian, Otared},
     title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result},
     journal = {Bollettino della Unione matematica italiana},
     pages = {207--230},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1178.35152},
     mrnumber = {MR2044267},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/}
}
TY  - JOUR
AU  - Canuto, Bruno
AU  - Kavian, Otared
TI  - Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 207
EP  - 230
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/
LA  - en
ID  - BUMI_2004_8_7B_1_a8
ER  - 
%0 Journal Article
%A Canuto, Bruno
%A Kavian, Otared
%T Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
%J Bollettino della Unione matematica italiana
%D 2004
%P 207-230
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/
%G en
%F BUMI_2004_8_7B_1_a8
Canuto, Bruno; Kavian, Otared. Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/