Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a bounded and sufficiently smooth domain $\Omega$ in $\mathbb{R}^{N}$, $N\geq 2$, let $(\lambda_{k})_{k=1}^{\infty}$ and $(\varphi_{k})_{k=1}^{\infty}$ be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) $$ - \text{div} (a(x) \nabla \varphi_{k})+ q(x) \varphi_{k}= \lambda_{k}\varrho (x) \varphi_{k} \text{ in } \Omega, \quad a\frac{\partial}{\partial \mathbf{n}} \varphi_{k}=0 \text{ su } \partial\Omega. $$ We prove that knowledge of the Dirichlet boundary spectral data $(\lambda_{k})_{k=1}^{\infty}$, $(\varphi_{k|\partial\Omega})_{k=1}^{\infty}$ determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map $\gamma$ for a related elliptic problem. Under suitable hypothesis on the coefficients $a, q, \varrho$ their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.
Sia $\Omega$ un dominio limitato e sufficientemente regolare di $\mathbb{R}^{N}$, $N\geq 2$, e siano $(\lambda_{k})_{k=1}^{\infty}$ e $(\varphi_{k})_{k=1}^{\infty}$ rispettivamente gli autovalori e le autofunzioni corrispondenti del problema (con condizioni al bordo di Neumann) $$ - \text{div} (a(x) \nabla \varphi_{k})+ q(x) \varphi_{k}= \lambda_{k}\varrho (x) \varphi_{k} \text{ in } \Omega, \quad a\frac{\partial}{\partial \mathbf{n}} \varphi_{k}=0 \text{ su } \partial\Omega. $$ Dimostriamo che i dati spetrali al bordo di Dirichlet $(\lambda_{k})_{k=1}^{\infty}$, $(\varphi_{k|\partial\Omega})_{k=1}^{\infty}$ determinano in modo unico la mappa $\gamma$ di Neumann-Dirichlet (o la mappa di Steklov- Poincaré) per un problema ellittico relativo. Sotto opportune ipotesi sui coefficienti $a, q, \varrho$ proviamo in seguito la loro identificabilità. Dimostriamo risultati analoghi nel caso di condizioni al bordo di Dirichlet.
@article{BUMI_2004_8_7B_1_a8,
     author = {Canuto, Bruno and Kavian, Otared},
     title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result},
     journal = {Bollettino della Unione matematica italiana},
     pages = {207--230},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1178.35152},
     mrnumber = {15185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/}
}
TY  - JOUR
AU  - Canuto, Bruno
AU  - Kavian, Otared
TI  - Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 207
EP  - 230
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/
LA  - en
ID  - BUMI_2004_8_7B_1_a8
ER  - 
%0 Journal Article
%A Canuto, Bruno
%A Kavian, Otared
%T Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result
%J Bollettino della Unione matematica italiana
%D 2004
%P 207-230
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/
%G en
%F BUMI_2004_8_7B_1_a8
Canuto, Bruno; Kavian, Otared. Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 207-230. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a8/

[1] G. Borg, Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math., 78 (1946), 1-96. | MR | Zbl

[2] R. M. Brown, Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056. | MR | Zbl

[3] R. M. Brown-G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. in Part. Diff. Equat., 22 (1997), 1009-1027. | MR | Zbl

[4] A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73. | MR

[5] B. Canuto-O. Kavian: Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963-986. | MR | Zbl

[6] N. Garofalo-F. H. Lin, Unique Continuation for Elliptic Operators: A Geometric- Variational Approach, Comm. on Pure and Appl. Math., 40 (1987), 347-366. | MR | Zbl

[7] I. M. Gel'Fand-B. M. Levitan, On determination of a differential equation from its spectral function, Izv. Akad. Nauk. SSSR Ser. Mat., 15 (1951), 309-360; Amer. Math. Soc. Transl. (Ser. 2), 1 (1955), 253-304. | Zbl

[8] V. Isakov, Inverse problems for partial differential equations, Applied Math. Sciences, vol. 127, Springer, New York, 1998. | MR | Zbl

[9] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidsskr., B (1949), 25-30. | MR | Zbl

[10] J.-L. Lions, Problèmes aux limites dans les équations aux dérivées partielles; Presses de l'Université de Montréal, Montréal 1965. | Zbl

[11] A. I. Nachman, Reconstructions from boundary measurements; Ann. Math., 128 (1988), 531-577. | Zbl

[12] A. I. Nachman-J. Sylvester-G. Uhlmann, An $n$-dimensional Borg-Levinson theorem; Comm. Math. Physics, 115 (1988), 595-605. | fulltext mini-dml | Zbl