Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 189-206.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the exterior problem in the plane for the wave equation with a Neumann boundary condition. We are interested to the asymptotic behavior for large times for the solution, and in particular to the dependence on the norms of the initial data in the estimate for the pointwise decay rate. In the paper we prove such an estimate, by a combination of the estimate of the local energy decay and decay estimates for the free space solution.
In questo articolo si considera il problema esterno nel piano per le equazioni delle onde con una condizione di Neumann al bordo. Lo studio riguarda il comportamento per tempi grandi della soluzione, con particolare attenzione per la dipendenza dalla norma dei dati iniziali nella stima del tasso di decadimento puntuale. Nell'articolo si prova una tale stima, mediante una combinazione della stima di decadimento dell'energia locale e stime per la soluzione in tutto il piano.
@article{BUMI_2004_8_7B_1_a7,
     author = {Secchi, Paolo},
     title = {Pointwise decay for solutions of the {2D} {Neumann} exterior problem for the wave equation},
     journal = {Bollettino della Unione matematica italiana},
     pages = {189--206},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1178.35231},
     mrnumber = {1374437},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a7/}
}
TY  - JOUR
AU  - Secchi, Paolo
TI  - Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 189
EP  - 206
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a7/
LA  - en
ID  - BUMI_2004_8_7B_1_a7
ER  - 
%0 Journal Article
%A Secchi, Paolo
%T Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation
%J Bollettino della Unione matematica italiana
%D 2004
%P 189-206
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a7/
%G en
%F BUMI_2004_8_7B_1_a7
Secchi, Paolo. Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 189-206. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a7/

[1] W. Dan-Y. Shibata, On a local energy decay of solutions of a dissipative wave equation, Funkcial. Ekvac., 38 (1995), 545-568. | fulltext mini-dml | MR | Zbl

[2] F. John, Nonlinear wave equations, Formation of singularities, Univ. Lectures Series vol. 2, AMS 1990. | MR | Zbl

[3] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math., 33 (1980), 43-101. | MR | Zbl

[4] S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space $R^{n1+1}$, Comm. Pure Appl. Math., 37 (1984), 443-455. | MR | Zbl

[5] R. Kleinman-B. Vainberg, Full-low frequency asymptotic expansion for secondorder elliptic equations in two dimensions, Math. Methods Appl. Sci., 17 (1994), 989-1004. | MR | Zbl

[6] Ta-Tsien Li-Yunmei Chen, Global classical solutions for nonlinear evolution equations, Longman, Harlow, 1992. | MR | Zbl

[7] C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264. | MR | Zbl

[8] C. S. Morawetz, Notes on time decay and scattering for some hyperbolic problems, Reg. Conf. Series Appl. Math., SIAM 1975. | MR | Zbl

[9] R. Racke, Lectures on Nonlinear Evolution Equations, Initial Value Problems, Vieweg Verlag, 1992. | MR | Zbl

[10] J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-824. | MR | Zbl

[11] B. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t \to \infty$ of solutions of non-stationary problems, Russian Math. Surveys, 30 (1975), 1-58. | MR | Zbl