Hölder continuity results for a class of functionals with non-standard growth
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 129-157.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove regularity results for real valued minimizers of the integral functional $\int f (x, u, Du)$ under non-standard growth conditions of $p(x)$-type, i.e. $$L^{-1} |z|^{p(x)} \leq f (x, s , z)\leq L(1+|z|^{p(x)})$$ under sharp assumptions on the continuous function $p(x)>1$.
In questo lavoro si provano risultati di regolarità per minimi di funzionali scalari $\int f (x, u, Du)$ a crescita non-standard di tipo $p(x)$, cioè: $$L^{-1} |z|^{p(x)} \leq f (x, s , z)\leq L(1+|z|^{p(x)}).$$ Si considerano per la funzione esponente $p(x)>1$ ipotesi di regolarità ottimali.
@article{BUMI_2004_8_7B_1_a5,
     author = {Eleuteri, Michela},
     title = {H\"older continuity results for a class of functionals with non-standard growth},
     journal = {Bollettino della Unione matematica italiana},
     pages = {129--157},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1178.49045},
     mrnumber = {888453},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/}
}
TY  - JOUR
AU  - Eleuteri, Michela
TI  - Hölder continuity results for a class of functionals with non-standard growth
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 129
EP  - 157
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/
LA  - en
ID  - BUMI_2004_8_7B_1_a5
ER  - 
%0 Journal Article
%A Eleuteri, Michela
%T Hölder continuity results for a class of functionals with non-standard growth
%J Bollettino della Unione matematica italiana
%D 2004
%P 129-157
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/
%G en
%F BUMI_2004_8_7B_1_a5
Eleuteri, Michela. Hölder continuity results for a class of functionals with non-standard growth. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 129-157. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/

[AF1] E. Acerbi-N. Fusco, A regularity theorem for minimizers of quasiconvex integrals, Arch. Rat. Mech. Anal., 99 (1987), 261-281. | MR | Zbl

[AF2] E. Acerbi-N. Fusco, A transmission problem in the calculus of variations, Calc. Var. Partial Differential Equations, 2 (1994), 1-16. | MR | Zbl

[AM1] E. Acerbi-G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. | MR | Zbl

[AM2] E. Acerbi-G. Mingione, Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Cl. Sci. (4), 30 (2001), 311-340. | fulltext mini-dml | MR | Zbl

[AM3] E. Acerbi-G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, no. 3 (2002), 213-259. | MR | Zbl

[AM4] E. Acerbi-G. Mingione, Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris Ser. I, 334, no. 9 (2002), 817-822. | MR | Zbl

[CM] A. Coscia-G. Mingione, Hölder continuity of the gradient of $p(x)$-harmonic mappings, C. R. Acad. Sci. Paris Ser. I, 328 (1999), 363-368. | MR | Zbl

[CP] G. Cupini-R. Petti, Hölder continuity of local minimizers of vectorial integral functionals, Nonlinear Diff. Equations Appl., 10, no. 3 (2003), 269-285. | MR | Zbl

[CFP] G. Cupini-N. Fusco-R. Petti, Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | MR | Zbl

[D] L. Diening: Theoretical And Numerical Results For Electrorheological Fluids, Ph. D. Thesis Universität Freiburg, 2002. | Zbl

[Ek] I. Ekeland, Nonconvex minimization problems, Bull. Am. Math. Soc., (3) 1 (1979), 443-474. | fulltext mini-dml | MR | Zbl

[ELM] L. Esposito-F. Leonetti-G. Mingione, Higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 157 (1999), 414-438. | MR | Zbl

[ER1] D. Edmunds-J. Rakosnik, Sobolev embeddings with variable exponent, Studia Mathematica, 143 (2000), 267-293. | fulltext mini-dml | MR | Zbl

[ER2] D. Edmunds-J. Rakosnik, Density of smooth functions in $W^{k, p(x)}$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. | MR | Zbl

[Ev] L. C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. | MR | Zbl

[F] A. Fiorenza, A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math., 4, no. 3 (2002), 587-605. | MR | Zbl

[FF] I. Fonseca-N. Fusco, Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 463-499. | fulltext mini-dml | MR | Zbl

[FFM] I. Fonseca, N. Fusco, P. Marcellini, An existence result for a non convex variational problem via regularity, ESAIM: Control, Opt. and Calc. Var., 7 (2002), 69-96. | fulltext mini-dml | MR | Zbl

[FH] N. Fusco-J. E. Hutchinson, $C^{1, \alpha}$ partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54, 1-2 (1985), 121-143. | MR | Zbl

[FM] M. Fuchs-G. Mingione, Full $C^{1,\alpha}$ regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250. | MR | Zbl

[FZ] X. Fan-D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA, 36(A) (1999), 295-318. | MR | Zbl

[G] E. Giusti, Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994. | MR | Zbl

[Ma] J. J. Manfredi, Regularity for minima of functionals with $p$-growth, J. Differential Equations, 76 (1988), 203-212. | MR | Zbl

[M1] P. Marcellini, Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. | MR | Zbl

[M2] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30. | MR | Zbl

[M3] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 1-25. | fulltext mini-dml | MR | Zbl

[MM] E. Mascolo-A. P. Migliorini, Everywhere regularity for vectorial functionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003), 399-418. | fulltext mini-dml | MR | Zbl

[RR] K. R. Rajagopal-M. Růžička, Mathematical modelling of electrorheological materials, Cont. Mech. Thermod., 13 (2001), 59-78. | Zbl

[R1] M. Růžička, Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, 329 (1999), 393-398. | MR | Zbl

[R2] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture notes in Mat. 1748, Springer Verlag, Berlin, Heidelberg, New York (2000). | MR | Zbl

[S] E. W. Stredulinski, Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29 (1980), 407-413. | MR | Zbl

[SZ] J. Serrin-H. Zou, Symmetry of ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 148 (1999), 265-290. | MR | Zbl

[Uh] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. | MR | Zbl

[Ur] N. Ural'Tseva, Quasilinear degenerate elliptic systems (Russian), Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7 (1968), 184-222. | MR | Zbl

[Z1] V. V. Zhikov, On some variational problems, Russian J. Math. Physics, 5 (1997), 105-116. | MR | Zbl

[Z2] V. V. Zhikov, Meyers-type estimates for solving the non linear Stokes system, Differential Equations, 33 (1) (1997), 107-114. | MR | Zbl