Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2004_8_7B_1_a5, author = {Eleuteri, Michela}, title = {H\"older continuity results for a class of functionals with non-standard growth}, journal = {Bollettino della Unione matematica italiana}, pages = {129--157}, publisher = {mathdoc}, volume = {Ser. 8, 7B}, number = {1}, year = {2004}, zbl = {1178.49045}, mrnumber = {888453}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/} }
TY - JOUR AU - Eleuteri, Michela TI - Hölder continuity results for a class of functionals with non-standard growth JO - Bollettino della Unione matematica italiana PY - 2004 SP - 129 EP - 157 VL - 7B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/ LA - en ID - BUMI_2004_8_7B_1_a5 ER -
Eleuteri, Michela. Hölder continuity results for a class of functionals with non-standard growth. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 129-157. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a5/
[AF1] A regularity theorem for minimizers of quasiconvex integrals, Arch. Rat. Mech. Anal., 99 (1987), 261-281. | MR | Zbl
- ,[AF2] A transmission problem in the calculus of variations, Calc. Var. Partial Differential Equations, 2 (1994), 1-16. | MR | Zbl
- ,[AM1] Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. | MR | Zbl
- ,[AM2] Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Cl. Sci. (4), 30 (2001), 311-340. | fulltext mini-dml | MR | Zbl
- ,[AM3] Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, no. 3 (2002), 213-259. | MR | Zbl
- ,[AM4] Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris Ser. I, 334, no. 9 (2002), 817-822. | MR | Zbl
- ,[CM] Hölder continuity of the gradient of $p(x)$-harmonic mappings, C. R. Acad. Sci. Paris Ser. I, 328 (1999), 363-368. | MR | Zbl
- ,[CP] Hölder continuity of local minimizers of vectorial integral functionals, Nonlinear Diff. Equations Appl., 10, no. 3 (2003), 269-285. | MR | Zbl
- ,[CFP] Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | MR | Zbl
- - ,[D] Zbl
, Ph. D. Thesis Universität Freiburg, 2002. |[Ek] Nonconvex minimization problems, Bull. Am. Math. Soc., (3) 1 (1979), 443-474. | fulltext mini-dml | MR | Zbl
,[ELM] Higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 157 (1999), 414-438. | MR | Zbl
- - ,[ER1] Sobolev embeddings with variable exponent, Studia Mathematica, 143 (2000), 267-293. | fulltext mini-dml | MR | Zbl
- ,[ER2] Density of smooth functions in $W^{k, p(x)}$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. | MR | Zbl
- ,[Ev] Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. | MR | Zbl
,[F] A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math., 4, no. 3 (2002), 587-605. | MR | Zbl
,[FF] Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 463-499. | fulltext mini-dml | MR | Zbl
- ,[FFM] An existence result for a non convex variational problem via regularity, ESAIM: Control, Opt. and Calc. Var., 7 (2002), 69-96. | fulltext mini-dml | MR | Zbl
, , ,[FH] $C^{1, \alpha}$ partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54, 1-2 (1985), 121-143. | MR | Zbl
- ,[FM] Full $C^{1,\alpha}$ regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250. | MR | Zbl
- ,[FZ] A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA, 36(A) (1999), 295-318. | MR | Zbl
- ,[G] Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994. | MR | Zbl
,[Ma] Regularity for minima of functionals with $p$-growth, J. Differential Equations, 76 (1988), 203-212. | MR | Zbl
,[M1] Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. | MR | Zbl
,[M2] Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30. | MR | Zbl
,[M3] Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 1-25. | fulltext mini-dml | MR | Zbl
,[MM] Everywhere regularity for vectorial functionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003), 399-418. | fulltext mini-dml | MR | Zbl
- ,[RR] Mathematical modelling of electrorheological materials, Cont. Mech. Thermod., 13 (2001), 59-78. | Zbl
- ,[R1] Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, 329 (1999), 393-398. | MR | Zbl
,[R2] Electrorheological fluids: modeling and mathematical theory, Lecture notes in Mat. 1748, Springer Verlag, Berlin, Heidelberg, New York (2000). | MR | Zbl
,[S] Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29 (1980), 407-413. | MR | Zbl
,[SZ] Symmetry of ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 148 (1999), 265-290. | MR | Zbl
- ,[Uh] Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. | MR | Zbl
,[Ur] Quasilinear degenerate elliptic systems (Russian), Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7 (1968), 184-222. | MR | Zbl
,[Z1] On some variational problems, Russian J. Math. Physics, 5 (1997), 105-116. | MR | Zbl
,[Z2] Meyers-type estimates for solving the non linear Stokes system, Differential Equations, 33 (1) (1997), 107-114. | MR | Zbl
,