Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2004_8_7B_1_a3, author = {Bonfiglioli, Andrea}, title = {Homogeneous {Carnot} groups related to sets of vector fields}, journal = {Bollettino della Unione matematica italiana}, pages = {79--107}, publisher = {mathdoc}, volume = {Ser. 8, 7B}, number = {1}, year = {2004}, zbl = {1178.35140}, mrnumber = {1878341}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/} }
Bonfiglioli, Andrea. Homogeneous Carnot groups related to sets of vector fields. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/
[1] Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc., 739 (2002). | MR | Zbl
,[2] A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, d'Azevedo Breda, A. M. (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. | MR | Zbl
,[3] A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. | MR | Zbl
- ,[4] Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. | MR | Zbl
- ,[5] Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. | MR | Zbl
- ,[6] Subharmonic functions on Carnot groups, Math. Ann., to appear. | MR | Zbl
- ,[7] Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. | MR | Zbl
- - ,[8] Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. | MR | Zbl
- ,[9] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. | fulltext mini-dml | MR | Zbl
,[10] Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989. | MR | Zbl
,[11] $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. | MR | Zbl
- ,[12] Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. | MR | Zbl
,[13] Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics, 18 Cambridge University Press, Cambridge, 1990. | MR | Zbl
- ,[14] Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. | MR | Zbl
- - ,[15] An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. | MR | Zbl
,[16] Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. | MR | Zbl
,[17] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. | MR | Zbl
,[18] Hardy spaces on homogeneous groups, Mathematical Notes, 28 Princeton University Press, Princeton, N.J., 1982. | MR | Zbl
- ,[19] A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001).
- ,[20] Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. | MR | Zbl
- - ,[21] Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. | MR | Zbl
- ,[22] Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. | fulltext mini-dml | MR | Zbl
- ,[23] Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. | MR | Zbl
- ,[24] A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. | MR | Zbl
- ,[25] Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968. | MR | Zbl
- ,[26] Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. | MR | Zbl
- ,[27] La structure de groupes de Lie, Monographies universitaires de mathématique, 27, Paris: Dunod, 1968. | Zbl
,[28] Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl
,[29] Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, New York-London: Wiley, 1962. | MR | Zbl
,[30] Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. | Jbk 60.1159.01 | MR
,[31] On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. | MR | Zbl
- ,[32] A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. | MR | Zbl
- - ,[33] Regular domains in homogeneous spaces, preprint (2001).
- ,[34] Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. | MR | Zbl
- ,[35] The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. | fulltext mini-dml | MR | Zbl
,[36] The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. | MR | Zbl
,[37] Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR | Zbl
- ,[38] The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. | MR | Zbl
,[39] Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. | MR | Zbl
,[40] Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics 102, Springer-Verlag, New York, 1984. | MR | Zbl
,[41] Analysis and geometry on groups, Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge, 1992. | MR | Zbl
- - ,