Homogeneous Carnot groups related to sets of vector fields
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_{1}, \ldots , X_{m}$ on $\mathbb{R}^{N}$, we ask whether there exists a homogeneous Carnot group $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ such that $\sum_{i} X_{i}^{2}$ is a sub-Laplacian on $\mathbb{G}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.
@article{BUMI_2004_8_7B_1_a3,
author = {Bonfiglioli, Andrea},
title = {Homogeneous {Carnot} groups related to sets of vector fields},
journal = {Bollettino della Unione matematica italiana},
pages = {79--107},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {1},
year = {2004},
zbl = {1178.35140},
mrnumber = {MR2044262},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/}
}
Bonfiglioli, Andrea. Homogeneous Carnot groups related to sets of vector fields. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/