Homogeneous Carnot groups related to sets of vector fields
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_{1}, \ldots , X_{m}$ on $\mathbb{R}^{N}$, we ask whether there exists a homogeneous Carnot group $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ such that $\sum_{i} X_{i}^{2}$ is a sub-Laplacian on $\mathbb{G}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.
@article{BUMI_2004_8_7B_1_a3,
     author = {Bonfiglioli, Andrea},
     title = {Homogeneous {Carnot} groups related to sets of vector fields},
     journal = {Bollettino della Unione matematica italiana},
     pages = {79--107},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1178.35140},
     mrnumber = {MR2044262},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/}
}
TY  - JOUR
AU  - Bonfiglioli, Andrea
TI  - Homogeneous Carnot groups related to sets of vector fields
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 79
EP  - 107
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/
LA  - en
ID  - BUMI_2004_8_7B_1_a3
ER  - 
%0 Journal Article
%A Bonfiglioli, Andrea
%T Homogeneous Carnot groups related to sets of vector fields
%J Bollettino della Unione matematica italiana
%D 2004
%P 79-107
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/
%G en
%F BUMI_2004_8_7B_1_a3
Bonfiglioli, Andrea. Homogeneous Carnot groups related to sets of vector fields. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/