Homogeneous Carnot groups related to sets of vector fields
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper, we are concerned with the following problem: given a set of smooth vector fields $X_{1}, \ldots , X_{m}$ on $\mathbb{R}^{N}$, we ask whether there exists a homogeneous Carnot group $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ such that $\sum_{i} X_{i}^{2}$ is a sub-Laplacian on $\mathbb{G}$. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.
In questo articolo ci occupiamo del seguente problema: data una famiglia di campi vettoriali regolari $X_{1}, \ldots , X_{m}$ su $\mathbb{R}^{N}$, ci chiediamo se esiste un gruppo omogeneo di Carnot $\mathbb{G}=(\mathbb{R}^{N}, \circ, \delta_{\lambda} )$ tale che $\sum_{i} X_{i}^{2}$ sia un sub-Laplaciano su $\mathbb{G}$. A tale proposito troviamo condizioni necessarie e sufficienti sugli assegnati campi vettoriali affinchè la risposta alla suddetta domanda sia positiva. Inoltre esibiamo una costruzione esplicita della legge di gruppo i che verifica i requisiti di cui sopra, fornendo dimostrazioni dirette. La prova è essenzialmente basata su una opportuna versione della formula di Campbell-Hausdorff. Per finire, mostriamo svariati esempi non banali del nostro metodo costruttivo.
@article{BUMI_2004_8_7B_1_a3,
     author = {Bonfiglioli, Andrea},
     title = {Homogeneous {Carnot} groups related to sets of vector fields},
     journal = {Bollettino della Unione matematica italiana},
     pages = {79--107},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1178.35140},
     mrnumber = {1878341},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/}
}
TY  - JOUR
AU  - Bonfiglioli, Andrea
TI  - Homogeneous Carnot groups related to sets of vector fields
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 79
EP  - 107
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/
LA  - en
ID  - BUMI_2004_8_7B_1_a3
ER  - 
%0 Journal Article
%A Bonfiglioli, Andrea
%T Homogeneous Carnot groups related to sets of vector fields
%J Bollettino della Unione matematica italiana
%D 2004
%P 79-107
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/
%G en
%F BUMI_2004_8_7B_1_a3
Bonfiglioli, Andrea. Homogeneous Carnot groups related to sets of vector fields. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a3/

[1] G. K. Alexopoulos, Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc., 739 (2002). | MR | Zbl

[2] C. Altafini, A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, d'Azevedo Breda, A. M. (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. | MR | Zbl

[3] I. Birindelli-E. Lanconelli, A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. | MR | Zbl

[4] A. Bonfiglioli-E. Lanconelli, Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. | MR | Zbl

[5] A. Bonfiglioli-E. Lanconelli, Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. | MR | Zbl

[6] A. Bonfiglioli-E. Lanconelli, Subharmonic functions on Carnot groups, Math. Ann., to appear. | MR | Zbl

[7] A. Bonfiglioli-E. Lanconelli-F. Uguzzoni, Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. | MR | Zbl

[8] A. Bonfiglioli-F. Uguzzoni, Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. | MR | Zbl

[9] J.-M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. | fulltext mini-dml | MR | Zbl

[10] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989. | MR | Zbl

[11] M. Bramanti-L. Brandolini, $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. | MR | Zbl

[12] L. Capogna, Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. | MR | Zbl

[13] L. J. Corwin-F. P. Greenleaf, Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics, 18 Cambridge University Press, Cambridge, 1990. | MR | Zbl

[14] J. Day-W. So-R. C. Thompson, Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. | MR | Zbl

[15] D. Ž. Djoković, An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. | MR | Zbl

[16] A. Eggert, Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. | MR | Zbl

[17] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. | MR | Zbl

[18] G. B. Folland-E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28 Princeton University Press, Princeton, N.J., 1982. | MR | Zbl

[19] B. Franchi-F. Ferrari, A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001).

[20] B. Franchi-R. Serapioni-F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. | MR | Zbl

[21] N. Garofalo-D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. | MR | Zbl

[22] N. Garofalo-D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. | fulltext mini-dml | MR | Zbl

[23] M. Grayson-R. Grossman, Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. | MR | Zbl

[24] C. Golé-R. Karidi, A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. | MR | Zbl

[25] M. Hausner-J. T. Scwartz, Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968. | MR | Zbl

[26] J. Heinonen-I. Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. | MR | Zbl

[27] G. Hochschild, La structure de groupes de Lie, Monographies universitaires de mathématique, 27, Paris: Dunod, 1968. | Zbl

[28] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl

[29] N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, New York-London: Wiley, 1962. | MR | Zbl

[30] A. N. Kolmogorov, Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. | Jbk 60.1159.01 | MR

[31] E. Lanconelli-S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. | MR | Zbl

[32] R. Montgomery-M. Shapiro-A. Stolin, A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. | MR | Zbl

[33] R. Monti-D. Morbidelli, Regular domains in homogeneous spaces, preprint (2001).

[34] R. Monti-F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. | MR | Zbl

[35] K. Okikiolu, The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. | fulltext mini-dml | MR | Zbl

[36] J. A. Oteo, The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. | MR | Zbl

[37] L. P. Rothschild-E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR | Zbl

[38] R. S. Strichartz, The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. | MR | Zbl

[39] R. C. Thompson, Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. | MR | Zbl

[40] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics 102, Springer-Verlag, New York, 1984. | MR | Zbl

[41] N. T. Varopoulos-L. Saloff-Coste-T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge, 1992. | MR | Zbl