A bound for the average rank of a family of abelian varieties
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 241-252
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this note, we consider a one-parameter family of Abelian varieties $A/ \mathbb{Q}(T)$, and find an upper bound for the average rank in terms of the generic rank. This bound is based on Michel's estimates for the average rank in a one-parameter family of Abelian varieties, and extends previous work of Silverman for elliptic surfaces.
@article{BUMI_2004_8_7B_1_a10,
author = {Wazir, Rania},
title = {A bound for the average rank of a family of abelian varieties},
journal = {Bollettino della Unione matematica italiana},
pages = {241--252},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {1},
year = {2004},
zbl = {1118.11030},
mrnumber = {MR2044269},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a10/}
}
Wazir, Rania. A bound for the average rank of a family of abelian varieties. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 241-252. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a10/