Monotone operators in divergence form with $x$-dependent multivalued graphs
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 23-59
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove the existence of solutions to $-\text{div}\, a(x, \text{grad}\, u)=f$, together with appropriate boundary conditions, whenever $a(x, e)$ is a maximal monotone graph in $e$, for every fixed $x$. We propose an adequate setting for this problem, in particular as far as measurability is concerned. It consists in looking at the graph after a $45^{\circ}$ rotation, for every fixed $x$; in other words, the graph $d\in a(x, e)$ is defined through $d-e=\varphi (x, d+e)$, where $\varphi$ is a Carathéodory contraction in $\mathbb{R}^{N}$. This definition is shown to be equivalent to the fact that $a(x, \cdot)$ is pointwise monotone and that, for any $g\in [L^{p'} (\Omega)]^{N}$ and any $\delta > 0$, the equation $d + \delta |e|^{p-2}e= g$ has a solution $(e, d)$ with $d\in a(x, e)$. Under additional coercivity and growth assumptions, the existence of solutions to $- \text{div}\, a(x, \text{grad}\, u)= f$ is then established.
@article{BUMI_2004_8_7B_1_a1,
author = {Francfort, Gilles and Murat, Fran\c{c}ois and Tartar, Luc},
title = {Monotone operators in divergence form with $x$-dependent multivalued graphs},
journal = {Bollettino della Unione matematica italiana},
pages = {23--59},
year = {2004},
volume = {Ser. 8, 7B},
number = {1},
zbl = {1115.35047},
mrnumber = {MR2044260},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a1/}
}
TY - JOUR AU - Francfort, Gilles AU - Murat, François AU - Tartar, Luc TI - Monotone operators in divergence form with $x$-dependent multivalued graphs JO - Bollettino della Unione matematica italiana PY - 2004 SP - 23 EP - 59 VL - 7B IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a1/ LA - en ID - BUMI_2004_8_7B_1_a1 ER -
%0 Journal Article %A Francfort, Gilles %A Murat, François %A Tartar, Luc %T Monotone operators in divergence form with $x$-dependent multivalued graphs %J Bollettino della Unione matematica italiana %D 2004 %P 23-59 %V 7B %N 1 %U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a1/ %G en %F BUMI_2004_8_7B_1_a1
Francfort, Gilles; Murat, François; Tartar, Luc. Monotone operators in divergence form with $x$-dependent multivalued graphs. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 23-59. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a1/