Local existence and estimations for a semilinear wave equation in two dimension space
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 1-21

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we prove a local existence theorem for a Cauchy problem associated to a semi linear wave equation with an exponential nonlinearity in two dimension space. In this problem, the first Cauchy data is equal to zero, the second is in $L^{2}(\mathbb{R}^{2})$, radially symmetric and compactly supported. To prove this theorem, we first show a Moser-Trudinger type inequality for the linear problem and then we use a fixed point method to achieve the proof of the result.
@article{BUMI_2004_8_7B_1_a0,
     author = {Baraket, Amel Atallah},
     title = {Local existence and estimations for a semilinear wave equation in two dimension space},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1117.35046},
     mrnumber = {MR2044259},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a0/}
}
TY  - JOUR
AU  - Baraket, Amel Atallah
TI  - Local existence and estimations for a semilinear wave equation in two dimension space
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 1
EP  - 21
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a0/
LA  - en
ID  - BUMI_2004_8_7B_1_a0
ER  - 
%0 Journal Article
%A Baraket, Amel Atallah
%T Local existence and estimations for a semilinear wave equation in two dimension space
%J Bollettino della Unione matematica italiana
%D 2004
%P 1-21
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a0/
%G en
%F BUMI_2004_8_7B_1_a0
Baraket, Amel Atallah. Local existence and estimations for a semilinear wave equation in two dimension space. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a0/