Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2003_8_6B_3_a15, author = {Otera, Daniele Ettore}, title = {On the simple connectivity at infinity of groups}, journal = {Bollettino della Unione matematica italiana}, pages = {739--748}, publisher = {mathdoc}, volume = {Ser. 8, 6B}, number = {3}, year = {2003}, zbl = {1121.57004}, mrnumber = {690848}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a15/} }
Otera, Daniele Ettore. On the simple connectivity at infinity of groups. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 739-748. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a15/
[1] Groups generated by reflections and aspherical manifolds non covered by Euclidian Spaces, Ann. of Math., 117 (1983), 293-324. | MR | Zbl
,[2] Quasi-isometry invariance of the simple connectivity at infinity of groups, preprint n. 141 Univ. di Palermo, 4 p. 2001.
- ,[3] Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), 447-510. | MR | Zbl
,[4] E. GHYS-P. DE LA HARPE (Editors), Sur les groupes hyperboliques d'après M. Gromov, Progress in Math., vol. 3, Birkhauser (1990). | MR | Zbl
[5] The fundamental group at infinity, Topology, 35 (1996), 655-669. | MR | Zbl
- ,[6] Hyperbolic groups, Essays in Group Theory (S. Gersten Ed.), MSRI publications, no. 8, Springer-Verlag (1987). | MR | Zbl
,[7] Compactifying covering of closed $3$-manifolds, J. of Diff. Geom., 30 (1989), 817-832. | fulltext mini-dml | MR | Zbl
- - ,[8] Manifolds covered by Euclidian space, Topology, 14 (1979), 49-57. | MR | Zbl
- ,[9] Some contractible open $3$-manifold, Transactions of A.M.S., 102 (1962), 373-382. | MR | Zbl
,[10] Open $3$-manifolds and the Poincare conjecture, Topology, 19 (1980), 313-320. | MR | Zbl
- ,[11] Contractible open $3$-manifolds that are not covering spaces, Topology, 27 (1988), 27-35. | MR | Zbl
,[12] $\pi_1^{\infty}\widetilde M^3=0$, A short outline of the proof, Prépublication d'Orsay, 73 (1999).
,[13] Universal covering spaces of closed $3$-manifolds are simply-connected at infinity, Prépublication d'Orsay, 20 (2000).
,[14] The piecewise linear structure of the Euclidean space, Proc. of the Cambridge Math. Phil. Soc., 58 (1962), 481-488. | MR | Zbl
,[15] Sui gruppi semplicemente connessi all'infinito, Rend. Ist. Mat. Univ. Trieste, 31 (1999), 61-78. | Zbl
,[16] On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. | MR | Zbl
,[17] A certain open manifold whose group is unity, Quart. J. of Math., 6 (1935), 268-279. | Zbl
,