On the simple connectivity at infinity of groups
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 739-748.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.
In questo articolo si definisce e si studia la nozione di semplice connessione all'infinito dei gruppi di presentazione finita, dando poi, in un caso particolare, una prova geometrica della sua invarianza per quasi-isometrie.
@article{BUMI_2003_8_6B_3_a15,
     author = {Otera, Daniele Ettore},
     title = {On the simple connectivity at infinity of groups},
     journal = {Bollettino della Unione matematica italiana},
     pages = {739--748},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1121.57004},
     mrnumber = {690848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a15/}
}
TY  - JOUR
AU  - Otera, Daniele Ettore
TI  - On the simple connectivity at infinity of groups
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 739
EP  - 748
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a15/
LA  - en
ID  - BUMI_2003_8_6B_3_a15
ER  - 
%0 Journal Article
%A Otera, Daniele Ettore
%T On the simple connectivity at infinity of groups
%J Bollettino della Unione matematica italiana
%D 2003
%P 739-748
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a15/
%G en
%F BUMI_2003_8_6B_3_a15
Otera, Daniele Ettore. On the simple connectivity at infinity of groups. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 739-748. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a15/

[1] M. Davis, Groups generated by reflections and aspherical manifolds non covered by Euclidian Spaces, Ann. of Math., 117 (1983), 293-324. | MR | Zbl

[2] L. Funar-D. E. Otera, Quasi-isometry invariance of the simple connectivity at infinity of groups, preprint n. 141 Univ. di Palermo, 4 p. 2001.

[3] D. Gabai, Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), 447-510. | MR | Zbl

[4] E. GHYS-P. DE LA HARPE (Editors), Sur les groupes hyperboliques d'après M. Gromov, Progress in Math., vol. 3, Birkhauser (1990). | MR | Zbl

[5] R. Geoghegan-M. Mihalik, The fundamental group at infinity, Topology, 35 (1996), 655-669. | MR | Zbl

[6] M. Gromov, Hyperbolic groups, Essays in Group Theory (S. Gersten Ed.), MSRI publications, no. 8, Springer-Verlag (1987). | MR | Zbl

[7] J. Hass-H. Rubinstein-P. Scott, Compactifying covering of closed $3$-manifolds, J. of Diff. Geom., 30 (1989), 817-832. | fulltext mini-dml | MR | Zbl

[8] R. Lee-F. Raymond, Manifolds covered by Euclidian space, Topology, 14 (1979), 49-57. | MR | Zbl

[9] D. R. Mcmillan, Some contractible open $3$-manifold, Transactions of A.M.S., 102 (1962), 373-382. | MR | Zbl

[10] D. R. Mcmillan-T. L. Tickstun, Open $3$-manifolds and the Poincare conjecture, Topology, 19 (1980), 313-320. | MR | Zbl

[11] R. Myers, Contractible open $3$-manifolds that are not covering spaces, Topology, 27 (1988), 27-35. | MR | Zbl

[12] V. Poénaru, $\pi_1^{\infty}\widetilde M^3=0$, A short outline of the proof, Prépublication d'Orsay, 73 (1999).

[13] V. Poénaru, Universal covering spaces of closed $3$-manifolds are simply-connected at infinity, Prépublication d'Orsay, 20 (2000).

[14] J. Stallings, The piecewise linear structure of the Euclidean space, Proc. of the Cambridge Math. Phil. Soc., 58 (1962), 481-488. | MR | Zbl

[15] C. Tanasi, Sui gruppi semplicemente connessi all'infinito, Rend. Ist. Mat. Univ. Trieste, 31 (1999), 61-78. | Zbl

[16] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. | MR | Zbl

[17] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. of Math., 6 (1935), 268-279. | Zbl