One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 685-692

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we consider two-dimensional quasilinear equations of the form $\text{div}(a(|\nabla u|) \nabla u)+ f(u)=0$ and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of $\nabla u $(notice that $\text{arg}(\nabla u)$ is a well-defined real function since $|\nabla u|> 0$ on $\mathbb{R}^{2}$) we prove that $u$ is one-dimensional, i.e., $u= u(\nu \cdot x)$ for some unit vector $\nu$. As a consequence of our result we obtain that any solution $u$ having one positive derivative is one-dimensional. This result provides a proof of a conjecture of E. De Giorgi in dimension 2 in the more general context of the quasilinear equations. In particular we obtain a new and simple proof of the classical De Giorgi's conjecture.
@article{BUMI_2003_8_6B_3_a12,
     author = {Farina, Alberto},
     title = {One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {685--692},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1115.35045},
     mrnumber = {MR2014827},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/}
}
TY  - JOUR
AU  - Farina, Alberto
TI  - One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 685
EP  - 692
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/
LA  - en
ID  - BUMI_2003_8_6B_3_a12
ER  - 
%0 Journal Article
%A Farina, Alberto
%T One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$
%J Bollettino della Unione matematica italiana
%D 2003
%P 685-692
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/
%G en
%F BUMI_2003_8_6B_3_a12
Farina, Alberto. One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 685-692. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/