One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 685-692
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper we consider two-dimensional quasilinear equations of the form $\text{div}(a(|\nabla u|) \nabla u)+ f(u)=0$ and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of $\nabla u $(notice that $\text{arg}(\nabla u)$ is a well-defined real function since $|\nabla u|> 0$ on $\mathbb{R}^{2}$) we prove that $u$ is one-dimensional, i.e., $u= u(\nu \cdot x)$ for some unit vector $\nu$. As a consequence of our result we obtain that any solution $u$ having one positive derivative is one-dimensional. This result provides a proof of a conjecture of E. De Giorgi in dimension 2 in the more general context of the quasilinear equations. In particular we obtain a new and simple proof of the classical De Giorgi's conjecture.
@article{BUMI_2003_8_6B_3_a12,
author = {Farina, Alberto},
title = {One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$},
journal = {Bollettino della Unione matematica italiana},
pages = {685--692},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {3},
year = {2003},
zbl = {1115.35045},
mrnumber = {MR2014827},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/}
}
TY - JOUR
AU - Farina, Alberto
TI - One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$
JO - Bollettino della Unione matematica italiana
PY - 2003
SP - 685
EP - 692
VL - 6B
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/
LA - en
ID - BUMI_2003_8_6B_3_a12
ER -
Farina, Alberto. One-dimensional symmetry for solutions of quasilinear equations in $\mathbb{R}^2$. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 685-692. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a12/