Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 667-683.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $Q_{T}$ be a cylinder in $\mathbb{R}^{n+1}$ and $x=(x',t)\in \mathbb{R}^{n}\times \mathbb{R}$. It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator $$ \begin{cases} u_{t}-\sum_{i,j=1}^{n}a^{ij}(x) D_{ij}u=f(x) \text{q.o. in } Q_{T}, \\ u(x)=0 \text{su } \partial Q_{T}, \end{cases} $$ in the Morrey spaces $W^{2,1}_{p,\lambda}(Q_{T})$, $p\in (1, \infty)$, $\lambda\in (0, n+2)$, supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.
Siano $Q_{T}$ un cilindro in $\mathbb{R}^{n+1}$ ed $x=(x',t)\in \mathbb{R}^{n}\times \mathbb{R}$. Si studia il problema di Cauchy-Dirichlet per l'operatore uniformemente parabolico $$ \begin{cases} u_{t}-\sum_{i,j=1}^{n}a^{ij}(x) D_{ij}u=f(x) \text{q.o. in } Q_{T}, \\ u(x)=0 \text{su } \partial Q_{T}, \end{cases} $$ nell'ambito degli spazi di Morrey $W^{2,1}_{p,\lambda}(Q_{T})$, $p\in (1, \infty)$, $\lambda\in (0, n+2)$ supponendo che i coefficienti della parte principale appartengano alla classe delle funzioni con oscillazione media infinitesima. Si ottengono inoltre delle stime a priori nei suddetti spazi, e regolarità Hölderiana della soluzione e della sua derivata spaziale.
@article{BUMI_2003_8_6B_3_a11,
     author = {Palagachev, Dian K. and Ragusa, Maria A. and Softova, Lubomira G.},
     title = {Cauchy-Dirichlet problem in {Morrey} spaces for parabolic equations with discontinuous coefficients},
     journal = {Bollettino della Unione matematica italiana},
     pages = {667--683},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1121.35067},
     mrnumber = {1174819},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a11/}
}
TY  - JOUR
AU  - Palagachev, Dian K.
AU  - Ragusa, Maria A.
AU  - Softova, Lubomira G.
TI  - Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 667
EP  - 683
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a11/
LA  - en
ID  - BUMI_2003_8_6B_3_a11
ER  - 
%0 Journal Article
%A Palagachev, Dian K.
%A Ragusa, Maria A.
%A Softova, Lubomira G.
%T Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
%J Bollettino della Unione matematica italiana
%D 2003
%P 667-683
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a11/
%G en
%F BUMI_2003_8_6B_3_a11
Palagachev, Dian K.; Ragusa, Maria A.; Softova, Lubomira G. Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 667-683. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a11/

[1] P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. | MR | Zbl

[2] M. Bramanti, Commutators of integral operators with positive kernels, Le Matematiche, 49 (1994), 149-168. | MR | Zbl

[3] M. Bramanti-M. C. Cerutti, $W_p^{1, 2}$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. in Partial Diff. Equations, 18 (1993), 1735-1763. | MR | Zbl

[4] A. P. Calderón-A. Zygmund, On the existence of certain singular integrals, Acta. Math., 88 (1952), 85-139. | MR | Zbl

[5] A. P. Calderón-A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921. | MR | Zbl

[6] P. Cannarsa, Second order nonvariational parabolic systems, Boll. Unione Mat. Ital., 18-C (1981), 291-315. | MR | Zbl

[7] F. Chiarenza-M. Frasca, Morrey spaces and Hardy-Littlewood maximal functions, Rend. Mat. Appl., 7 (1987), 273-279. | MR | Zbl

[8] F. Chiarenza-M. Frasca-P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168. | MR | Zbl

[9] F. Chiarenza-M. Frasca-P. Longo, $W^{2,p}$ solvability of the Dirichlet problem for nondivergence form elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853. | MR | Zbl

[10] G. Da Prato, Spazi $\mathcal{L}^{p,\theta}(\Omega, \delta)$ e loro proprietà, Ann. Mat. Pura Appl., 69 (1965), 383-392. | MR | Zbl

[11] G. Di Fazio-D. K. Palagachev-M. A. Ragusa, Global Morrey regularity of strong solutions to Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (1999), 179-196. | MR | Zbl

[12] E. B. Fabes-N. Rivière, Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19-38. | fulltext mini-dml | MR | Zbl

[13] D. Gilbarg-N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. | MR | Zbl

[14] F. Guglielmino, Sulle equazioni paraboliche del secondo ordine di tipo non variazionale, Ann. Mat. Pura Appl.,65 (1964), 127-151. | MR | Zbl

[15] F. John-L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. | MR | Zbl

[16] O. A. Ladyzhenskaya-V. A. Solonnikov-N. N. Ural'Tseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence, R.I. 1968. | Zbl

[17] A. Maugeri-D. K. Palagachev-L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley-VCH, Berlin, 2000. | MR | Zbl

[18] D. K. Palagachev-M. A. Ragusa-L. G. Softova, Regular oblique derivative problem in Morrey spaces, Electr. J. Diff. Equations, 2000 (2000), No. 39, 1-17. | MR | Zbl

[19] D.K. Palagachev-L.G. Softova, Singular integral operators with mixed homogeneity in Morrey spaces C. R. Acad. Bulgare Sci., 54 (2001), No. 11, 11-16. | MR | Zbl

[20] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391-405. | MR | Zbl

[21] L. G. Softova, Regular oblique derivative problem for linear parabolic equations with VMO principal coefficients, Manuscr. Math., 103, No. 2 (2000), 203-220. | MR | Zbl

[22] L. G. Softova, Morrey regularity of strong solutions to parabolic equations with VMO coefficients, C. R. Acad. Sci., Paris, Ser. I, Math., 333, No. 7 (2001), 635-640. | MR | Zbl

[23] L. G. Softova, Parabolic equations with VMO coefficients in Morrey spaces, Electr. J. Diff. Equations, 2001, No. 51 (2001), 1-25. | MR | Zbl