Schwartz kernels on the Heisenberg group
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 657-666.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $H_{n}$ be the Heisenberg group of dimension $2n+1$. Let $\mathcal{L}_{1},\ldots, \mathcal{L}_{n}$ be the partial sub-Laplacians on $H_{n}$ and $T$ the central element of the Lie algebra of $H_{n}$. We prove that the kernel of the operator $m(\mathcal{L}_{1},\ldots, \mathcal{L}_{n},-iT)$ is in the Schwartz space $S(H_{n})$ if $m\in S(\mathbb{R}^{n+1} )$. We prove also that the kernel of the operator $h(\mathcal{L}_{1},\ldots, \mathcal{L}_{n})$ is in $S(H_{n})$ if $h\in S(\mathbb{R}^{n})$ and that the kernel of the operator $g(\mathcal{L}, -iT)$ is in $S(H_{n})$ if $g\in S(\mathbb{R}^{2})$. Here $\mathcal{L}= \mathcal{L}_{1}+ \ldots+\mathcal{L}_{n}$ is the Kohn-Laplacian on $H_{n}$.
Sia $H_{n}$ il gruppo di Heisenberg di dimensione $2n+1$. Siano $\mathcal{L}_{1},\ldots, \mathcal{L}_{n}$ i sub-Laplaciani parziali su $H_{n}$ e $T$ l'elemento centrale dell'algebra di Lie di $H_{n}$. In questo lavoro dimostriamo che, data una funzione $m$ appartenente allo spazio di Schwartz $S(\mathbb{R}^{n+1})$, il nucleo dell'operatore $m(\mathcal{L}_{1},\ldots, \mathcal{L}_{n},-iT)$ è una funzione in $S(H_{n})$. Inoltre dimostriamo che, date altre due funzioni $h\in S(\mathbb{R}^{n} )$ e $g\in S(\mathbb{R}^{2})$, i nuclei degli operatori $h(\mathcal{L}_{1},\ldots, \mathcal{L}_{n})$ e $g(\mathcal{L}, -iT)$ stanno in $S(H_{n})$. Qui $\mathcal{L}= \mathcal{L}_{1}+ \ldots+\mathcal{L}_{n}$ è il sub-Laplaciano su $H_{n}$.
@article{BUMI_2003_8_6B_3_a10,
     author = {Veneruso, Alessandro},
     title = {Schwartz kernels on the {Heisenberg} group},
     journal = {Bollettino della Unione matematica italiana},
     pages = {657--666},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.43007},
     mrnumber = {1612717},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/}
}
TY  - JOUR
AU  - Veneruso, Alessandro
TI  - Schwartz kernels on the Heisenberg group
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 657
EP  - 666
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/
LA  - en
ID  - BUMI_2003_8_6B_3_a10
ER  - 
%0 Journal Article
%A Veneruso, Alessandro
%T Schwartz kernels on the Heisenberg group
%J Bollettino della Unione matematica italiana
%D 2003
%P 657-666
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/
%G en
%F BUMI_2003_8_6B_3_a10
Veneruso, Alessandro. Schwartz kernels on the Heisenberg group. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 657-666. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/

[1] C. Benson-J. Jenkins-G. Ratcliff, The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal., 154 (1998), 379-423. | MR | Zbl

[2] C. Benson-J. Jenkins-G. Ratcliff-T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math., 71 (1996), 305-328. | MR | Zbl

[3] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., 83 (1981), 69-70. | MR | Zbl

[4] G. B. Folland-E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982. | MR | Zbl

[5] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., 78 (1984), 253-266. | fulltext mini-dml | MR | Zbl

[6] A. Korányi-S. Vági-G. V. Welland, Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. Mech., 19 (1970), 1069-1081. | MR | Zbl

[7] G. Mauceri, Maximal operators and Riesz means on stratified groups, Symposia Math., 29 (1987), 47-62. | MR | Zbl

[8] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. | MR | Zbl