Schwartz kernels on the Heisenberg group
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 657-666
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $H_{n}$ be the Heisenberg group of dimension $2n+1$. Let $\mathcal{L}_{1},\ldots, \mathcal{L}_{n}$ be the partial sub-Laplacians on $H_{n}$ and $T$ the central element of the Lie algebra of $H_{n}$. We prove that the kernel of the operator $m(\mathcal{L}_{1},\ldots, \mathcal{L}_{n},-iT)$ is in the Schwartz space $S(H_{n})$ if $m\in S(\mathbb{R}^{n+1} )$. We prove also that the kernel of the operator $h(\mathcal{L}_{1},\ldots, \mathcal{L}_{n})$ is in $S(H_{n})$ if $h\in S(\mathbb{R}^{n})$ and that the kernel of the operator $g(\mathcal{L}, -iT)$ is in $S(H_{n})$ if $g\in S(\mathbb{R}^{2})$. Here $\mathcal{L}= \mathcal{L}_{1}+ \ldots+\mathcal{L}_{n}$ is the Kohn-Laplacian on $H_{n}$.
@article{BUMI_2003_8_6B_3_a10,
author = {Veneruso, Alessandro},
title = {Schwartz kernels on the {Heisenberg} group},
journal = {Bollettino della Unione matematica italiana},
pages = {657--666},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {3},
year = {2003},
zbl = {1178.43007},
mrnumber = {MR2014825},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/}
}
Veneruso, Alessandro. Schwartz kernels on the Heisenberg group. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 657-666. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/