Schwartz kernels on the Heisenberg group
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 657-666

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $H_{n}$ be the Heisenberg group of dimension $2n+1$. Let $\mathcal{L}_{1},\ldots, \mathcal{L}_{n}$ be the partial sub-Laplacians on $H_{n}$ and $T$ the central element of the Lie algebra of $H_{n}$. We prove that the kernel of the operator $m(\mathcal{L}_{1},\ldots, \mathcal{L}_{n},-iT)$ is in the Schwartz space $S(H_{n})$ if $m\in S(\mathbb{R}^{n+1} )$. We prove also that the kernel of the operator $h(\mathcal{L}_{1},\ldots, \mathcal{L}_{n})$ is in $S(H_{n})$ if $h\in S(\mathbb{R}^{n})$ and that the kernel of the operator $g(\mathcal{L}, -iT)$ is in $S(H_{n})$ if $g\in S(\mathbb{R}^{2})$. Here $\mathcal{L}= \mathcal{L}_{1}+ \ldots+\mathcal{L}_{n}$ is the Kohn-Laplacian on $H_{n}$.
@article{BUMI_2003_8_6B_3_a10,
     author = {Veneruso, Alessandro},
     title = {Schwartz kernels on the {Heisenberg} group},
     journal = {Bollettino della Unione matematica italiana},
     pages = {657--666},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.43007},
     mrnumber = {MR2014825},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/}
}
TY  - JOUR
AU  - Veneruso, Alessandro
TI  - Schwartz kernels on the Heisenberg group
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 657
EP  - 666
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/
LA  - en
ID  - BUMI_2003_8_6B_3_a10
ER  - 
%0 Journal Article
%A Veneruso, Alessandro
%T Schwartz kernels on the Heisenberg group
%J Bollettino della Unione matematica italiana
%D 2003
%P 657-666
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/
%G en
%F BUMI_2003_8_6B_3_a10
Veneruso, Alessandro. Schwartz kernels on the Heisenberg group. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 657-666. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a10/