Composition operators on Banach spaces of formal power series
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 481-487
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $\{\beta (n)\}^{\infty}_{n=0}$ be a sequence of positive numbers and $1\leq p \infty$. We consider the space $H^{p}(\beta)$ of all power series $f(z)= \sum_{n=0}^{\infty} \hat{f}(n)z^{n}$ such that $\sum_{n=0}^{\infty}|\hat{f}(n)|^{p}\beta(n)^{p}\infty $ . Suppose that $\frac{1}{p}+\frac{1}{q}=1$ and $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^{q}}=\infty$ for some nonnegative integer $j$. We show that if $C_{\varphi}$ is compact on $H^{p}(\beta)$, then the non-tangential limit of $\varphi^{(j+1)}$ has modulus greater than one at each boundary point of the open unit disc. Also we show that if $C_{\varphi}$ is Fredholm on $H_{p}(\beta)$, then $\varphi$ must be an automorphism of the open unit disc.
@article{BUMI_2003_8_6B_2_a12,
author = {Yousefi, B. and Jahedi, S.},
title = {Composition operators on {Banach} spaces of formal power series},
journal = {Bollettino della Unione matematica italiana},
pages = {481--487},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {2},
year = {2003},
zbl = {1150.47014},
mrnumber = {MR1988217},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a12/}
}
TY - JOUR AU - Yousefi, B. AU - Jahedi, S. TI - Composition operators on Banach spaces of formal power series JO - Bollettino della Unione matematica italiana PY - 2003 SP - 481 EP - 487 VL - 6B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a12/ LA - en ID - BUMI_2003_8_6B_2_a12 ER -
Yousefi, B.; Jahedi, S. Composition operators on Banach spaces of formal power series. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 481-487. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a12/