On a mathematical model for the crystallization of polymers
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 161-179
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint $W_{eq}$ on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the fact that $W_{eq}$ is a function depending on the temperature T (which is actually the case). We analyse the model in two different conditions: for constitutive equations of non-Lipschitz type, we use monotonicity and $L^{1}$-technique to prove existence and continuous dependence on the data of a weak solution. For more regular constitutive equations, using a fixed point tecnique, we prove a global existence and uniqueness result for a classical solution.
@article{BUMI_2003_8_6B_1_a9,
author = {Gualdani, Maria Pia},
title = {On a mathematical model for the crystallization of polymers},
journal = {Bollettino della Unione matematica italiana},
pages = {161--179},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {1},
year = {2003},
zbl = {1141.80008},
mrnumber = {MR1955703},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a9/}
}
TY - JOUR AU - Gualdani, Maria Pia TI - On a mathematical model for the crystallization of polymers JO - Bollettino della Unione matematica italiana PY - 2003 SP - 161 EP - 179 VL - 6B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a9/ LA - en ID - BUMI_2003_8_6B_1_a9 ER -
Gualdani, Maria Pia. On a mathematical model for the crystallization of polymers. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 161-179. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a9/