Some generic properties of concentration dimension of measure
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 211-219
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $K$ be a compact quasi self-similar set in a complete metric space $X$ and let $\mathfrak{M}_{1}(K)$ denote the space of all probability measures on $K$, endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in $\mathfrak{M}_{1}(K)$ the lower concentration dimension is equal to $0$, while the upper concentration dimension is equal to the Hausdorff dimension of $K$.
@article{BUMI_2003_8_6B_1_a12,
author = {Myjak, J\'ozef and Szarek, Tomasz},
title = {Some generic properties of concentration dimension of measure},
journal = {Bollettino della Unione matematica italiana},
pages = {211--219},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {1},
year = {2003},
zbl = {1177.28014},
mrnumber = {MR1955706},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/}
}
TY - JOUR AU - Myjak, Józef AU - Szarek, Tomasz TI - Some generic properties of concentration dimension of measure JO - Bollettino della Unione matematica italiana PY - 2003 SP - 211 EP - 219 VL - 6B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/ LA - en ID - BUMI_2003_8_6B_1_a12 ER -
Myjak, Józef; Szarek, Tomasz. Some generic properties of concentration dimension of measure. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 211-219. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/