Some generic properties of concentration dimension of measure
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 211-219.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $K$ be a compact quasi self-similar set in a complete metric space $X$ and let $\mathfrak{M}_{1}(K)$ denote the space of all probability measures on $K$, endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in $\mathfrak{M}_{1}(K)$ the lower concentration dimension is equal to $0$, while the upper concentration dimension is equal to the Hausdorff dimension of $K$.
Sia $K$ un sottoinsieme quasi similare compatto di uno spazio metrico completo. Sia $\mathfrak{M}_{1}(K)$ lo spazio delle misure di probabilità su $K$ munito della metrica di Fortet-Mourier. Si dimostra che per una misura $\mu \in \mathfrak{M}_{1}(K)$ tipica (nel senzo della categoria di Baire) la dimensione inferiore di concentrazione è uguale a zero, invece la dimensione superiore di concentrazione è uguale alla dimensione di Hausdorff dell'insieme $K$.
@article{BUMI_2003_8_6B_1_a12,
     author = {Myjak, J\'ozef and Szarek, Tomasz},
     title = {Some generic properties of concentration dimension of measure},
     journal = {Bollettino della Unione matematica italiana},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1177.28014},
     mrnumber = {969315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/}
}
TY  - JOUR
AU  - Myjak, Józef
AU  - Szarek, Tomasz
TI  - Some generic properties of concentration dimension of measure
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 211
EP  - 219
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/
LA  - en
ID  - BUMI_2003_8_6B_1_a12
ER  - 
%0 Journal Article
%A Myjak, Józef
%A Szarek, Tomasz
%T Some generic properties of concentration dimension of measure
%J Bollettino della Unione matematica italiana
%D 2003
%P 211-219
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/
%G en
%F BUMI_2003_8_6B_1_a12
Myjak, Józef; Szarek, Tomasz. Some generic properties of concentration dimension of measure. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 211-219. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a12/

[1] K. J. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554. | MR | Zbl

[2] J. Genyuk, A typical measure typically has no local dimension, Real Anal. Exchange, 23 (1997/1998), 525-537. | MR | Zbl

[3] P. M. Gruber, Dimension and structure of typical compact sets, continua and curves, Mh. Math., 108 (1989), 149-164. | MR | Zbl

[4] W. Hengartner-R. Theodorescu, Concentration Functions, Academic Press, New York-London (1973). | MR | Zbl

[5] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. | MR | Zbl

[6] A. Lasota-J. Myjak, On a dimension of measures, Bull. Pol. Ac. Math. 2002. | Zbl

[7] J. Mclaughlin, A note on Hausdorff measures of quasi self-similar sets, Proc. Amer. Math. Soc., 100 (1987), 183-186. | MR | Zbl

[8] J. Myjak-R. Rudnicki, Box and packing dimension of typical compact sets, Monatsh. Math., 131 (2000), 223-226. | MR | Zbl

[9] J. Myjak-R. Rudnicki, On the typical structure of compact sets, Arch. Math., 76 (2001), 119-126. | MR | Zbl

[10] J. Myjak-R. Rudnicki, Typical properties of correlation dimension (to appear). | fulltext mini-dml | MR | Zbl

[11] J. Myjak-T. Szarek, Szpilrajn type theorem for concentration dimension of measure, Fund. Math., 172 (2002), 19-25. | MR | Zbl

[12] D. Sullivan, Seminar on conformal and hyperbolic geometry, Lecture Notes, Inst. Hautes Etudes Sci., Bures-sur-Yvette 1982.

[13] J. Myjak-R. Rudnicki, On the Box Dimension of Typical Measures, Monatsh. Math., 136 (2002), 143-150. | MR | Zbl

[14] J. Myjak-T. Szarck, Generic properties of Markov operators, Rend. Circ. Matem. Palermo (to appear). | Zbl