Mean curvature and least energy solutions for the critical Neumann problem with weight
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 715-733
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.
@article{BUMI_2002_8_5B_3_a8,
author = {Chabrowski, J.},
title = {Mean curvature and least energy solutions for the critical {Neumann} problem with weight},
journal = {Bollettino della Unione matematica italiana},
pages = {715--733},
publisher = {mathdoc},
volume = {Ser. 8, 5B},
number = {3},
year = {2002},
zbl = {1097.35046},
mrnumber = {MR1934376},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a8/}
}
TY - JOUR AU - Chabrowski, J. TI - Mean curvature and least energy solutions for the critical Neumann problem with weight JO - Bollettino della Unione matematica italiana PY - 2002 SP - 715 EP - 733 VL - 5B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a8/ LA - en ID - BUMI_2002_8_5B_3_a8 ER -
Chabrowski, J. Mean curvature and least energy solutions for the critical Neumann problem with weight. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 715-733. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a8/