Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_3_a8, author = {Chabrowski, J.}, title = {Mean curvature and least energy solutions for the critical {Neumann} problem with weight}, journal = {Bollettino della Unione matematica italiana}, pages = {715--733}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {3}, year = {2002}, zbl = {1097.35046}, mrnumber = {1205370}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a8/} }
TY - JOUR AU - Chabrowski, J. TI - Mean curvature and least energy solutions for the critical Neumann problem with weight JO - Bollettino della Unione matematica italiana PY - 2002 SP - 715 EP - 733 VL - 5B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a8/ LA - en ID - BUMI_2002_8_5B_3_a8 ER -
Chabrowski, J. Mean curvature and least energy solutions for the critical Neumann problem with weight. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 715-733. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a8/
[1] The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25. | MR | Zbl
- ,[2] Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18. | MR | Zbl
- ,[3] The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), 591-631. | MR | Zbl
- - ,[4] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350. | MR | Zbl
- - ,[5] Characterization of concentration points and $L^\infty$-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), 31-68. | Zbl
- - ,[6] Critical Sobolev exponent problem in $\mathbb{R}^{N}$ ($N \geq 4$) with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), 275-284. | MR | Zbl
- ,[7] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477. | MR | Zbl
- ,[8] Least energy solutions of a critical Neumann problem with weight, to appear in Calc. Var. | Zbl
- ,[9] Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds, Calc. Var., 8 (1999), 293-326. | MR | Zbl
,[10] Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var., 12 (2001), 59-84. | MR | Zbl
- ,[11] The best constants problem in Sobolev inequalities, Math. Ann., 314 (1999), 327-346. | MR | Zbl
,[12] Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), 623-657. | MR | Zbl
,[13] Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. of the Royal Society of Edinburgh, 116A (1990), 23-43. | MR | Zbl
- ,[14] Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474. | MR | Zbl
- ,[15] Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, Springer (1996), 16-35. | MR | Zbl
,[16] Meilleures constantes dans le théorème d'inclusion de Sobolev, I.H.P. Analyse non-linéaire, 13 (1996), 57-93. | fulltext mini-dml | MR | Zbl
- ,[17] The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), 145-201 and 45-120. | MR | Zbl
,[18] Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37, No. 2 (1988), 301-324. | MR | Zbl
- - ,[19] Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), 1-20. | fulltext mini-dml | MR | Zbl
- - ,[20] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851. | MR | Zbl
- ,[21] Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. | MR | Zbl
,[22] On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993), 433-442. | MR | Zbl
,[23] Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), 671-694. | MR | Zbl
,[24] High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. of Edinburgh, 125A (1995), 1013-1029. | Zbl
,[25] The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), 1533-1554. | MR | Zbl
,[26] Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonl. Anal. T.M.A., 27, No. 11 (1996), 1281-1306. | MR | Zbl
,[27] Existence and nonexistence of $G$-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., 8 (1999), 109-122. | MR | Zbl
,[28] Sobolev inequalities with interior norms, Calc. Var., 8 (1999), 27-43. | MR | Zbl
,