Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_3_a5, author = {De Grande-De Kimpe, N. and K\k{a}kol, J. and Perez-Garcia, C. and Schikhof, W. H.}, title = {Weak bases in $p$-adic spaces}, journal = {Bollettino della Unione matematica italiana}, pages = {667--676}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {3}, year = {2002}, zbl = {1072.46051}, mrnumber = {320689}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/} }
TY - JOUR AU - De Grande-De Kimpe, N. AU - Kąkol, J. AU - Perez-Garcia, C. AU - Schikhof, W. H. TI - Weak bases in $p$-adic spaces JO - Bollettino della Unione matematica italiana PY - 2002 SP - 667 EP - 676 VL - 5B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/ LA - en ID - BUMI_2002_8_5B_3_a5 ER -
%0 Journal Article %A De Grande-De Kimpe, N. %A Kąkol, J. %A Perez-Garcia, C. %A Schikhof, W. H. %T Weak bases in $p$-adic spaces %J Bollettino della Unione matematica italiana %D 2002 %P 667-676 %V 5B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/ %G en %F BUMI_2002_8_5B_3_a5
De Grande-De Kimpe, N.; Kąkol, J.; Perez-Garcia, C.; Schikhof, W. H. Weak bases in $p$-adic spaces. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 667-676. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/
[1] On the structure of locally $K$-convex spaces with a Schauder base, Indag. Math., 34 (1972), 396-406. | MR | Zbl
,[2] Weakly closed subspaces and the Hahn-Banach extension property in $p$-adic analysis, Indag. Math., 91 (1988), 253-261. | MR | Zbl
- ,[3] Orthogonal sequences in non-archimedean locally convex spaces, Indag. Math. N.S., 11 (2000), 187-195. | MR | Zbl
- - , ,[4] The barrelled space associated with a bornological space need not be bornological, Bull. London Math. Soc., 12 (1980), 60-62. | MR | Zbl
,[5] On some non-archimedean closed graph theorems, In: Proc 4th Intern. Conf. on $p$p-adic Functional Analysis, Nijmegen, The Netherlands, Marcel Dekker, 192 (1997), 153-159. | MR | Zbl
- ,[6] Schauder decomposition and completeness, Bull. London Math. Soc., 2 (1970), 34-36. | MR | Zbl
,[7] Weak Schauder bases and completeness, Proc. Roy. Irish Ac., 78 (1978), 51-54. | MR | Zbl
- ,[8] The weak basis theorem for $K$-Banach spaces, Bull. Soc. Math. Belg., 45 (1993), 1-4. | MR | Zbl
,[9] On the weak basis theorems for $p$-adic locally convex spaces, In: Proc. 5th Intern. Conf. on $p$p-adic Functional Analysis, Poznań, Poland, Marcel Dekker, 207 (1999), 149-167. | MR | Zbl
- ,[10] $p$-Adic barrelledness and spaces of countable type, Indian J. Pure Appl. Math., 29 (1998), 1099-1109. | MR | Zbl
- ,[11] The Orlicz-Pettis property in $p$-adic analysis, Collect. Math., 43 (1992), 225-233. | MR | Zbl
- ,[12] Non-archimedean functional analysis, Marcel Dekker, New York (1978). | MR | Zbl
,[13] Locally convex spaces over nonspherically complete valued fields, Bull. Soc. Math. Belg., 38 (1986), 187-224. | MR | Zbl
,[14] Every infinite-dimensional non-archimedean Fréchet space has an orthogonal basic sequence (to appear in Indag. Math.). | Zbl
,[15] Espaces localement $K$-convexes, Indag. Math, 27 (1965), 249-289. | MR | Zbl
,[16] Schauder decompositions in locally convex spaces, Camb. Phil. Soc., 76 (1974), 145-152. | MR | Zbl
,