Weak bases in $p$-adic spaces
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 667-676.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study polar locally convex spaces over a non-archimedean non-trivially valued complete field with a weak topological basis. We prove two completeness theorems and a Hahn-Banach type theorem for locally convex spaces with a weak Schauder basis.
Si studiano spazi polari localmente convessi su un non trivialmente valutato campo completo non archimedeo con una debole base topologica. Dimostriamo due teoremi di completezza e un teorema tipo Hahn-Banach per spazi localmente convessi con una debole base di Schauder.
@article{BUMI_2002_8_5B_3_a5,
     author = {De Grande-De Kimpe, N. and K\k{a}kol, J. and Perez-Garcia, C. and Schikhof, W. H.},
     title = {Weak bases in $p$-adic spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {667--676},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1072.46051},
     mrnumber = {320689},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/}
}
TY  - JOUR
AU  - De Grande-De Kimpe, N.
AU  - Kąkol, J.
AU  - Perez-Garcia, C.
AU  - Schikhof, W. H.
TI  - Weak bases in $p$-adic spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 667
EP  - 676
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/
LA  - en
ID  - BUMI_2002_8_5B_3_a5
ER  - 
%0 Journal Article
%A De Grande-De Kimpe, N.
%A Kąkol, J.
%A Perez-Garcia, C.
%A Schikhof, W. H.
%T Weak bases in $p$-adic spaces
%J Bollettino della Unione matematica italiana
%D 2002
%P 667-676
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/
%G en
%F BUMI_2002_8_5B_3_a5
De Grande-De Kimpe, N.; Kąkol, J.; Perez-Garcia, C.; Schikhof, W. H. Weak bases in $p$-adic spaces. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 667-676. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a5/

[1] N. De Grande-De Kimpe, On the structure of locally $K$-convex spaces with a Schauder base, Indag. Math., 34 (1972), 396-406. | MR | Zbl

[2] N. De Grande-De Kimpe-C. Perez-Garcia, Weakly closed subspaces and the Hahn-Banach extension property in $p$-adic analysis, Indag. Math., 91 (1988), 253-261. | MR | Zbl

[3] N. De Grande De Kimpe-J. Kąkol-C. Perez Garcia, W. H. Schikhof, Orthogonal sequences in non-archimedean locally convex spaces, Indag. Math. N.S., 11 (2000), 187-195. | MR | Zbl

[4] S. Dierolf, The barrelled space associated with a bornological space need not be bornological, Bull. London Math. Soc., 12 (1980), 60-62. | MR | Zbl

[5] T. Gilsdorf-J. Kąkol, On some non-archimedean closed graph theorems, In: Proc 4th Intern. Conf. on $p$p-adic Functional Analysis, Nijmegen, The Netherlands, Marcel Dekker, 192 (1997), 153-159. | MR | Zbl

[6] N. J. Kalton, Schauder decomposition and completeness, Bull. London Math. Soc., 2 (1970), 34-36. | MR | Zbl

[7] P. K. Kamthan-M. Gupta, Weak Schauder bases and completeness, Proc. Roy. Irish Ac., 78 (1978), 51-54. | MR | Zbl

[8] J. Kąkol, The weak basis theorem for $K$-Banach spaces, Bull. Soc. Math. Belg., 45 (1993), 1-4. | MR | Zbl

[9] J. Kąkol-T. Gilsdorf, On the weak basis theorems for $p$-adic locally convex spaces, In: Proc. 5th Intern. Conf. on $p$p-adic Functional Analysis, Poznań, Poland, Marcel Dekker, 207 (1999), 149-167. | MR | Zbl

[10] C. Perez-Garcia-W. H. Schikhof, $p$-Adic barrelledness and spaces of countable type, Indian J. Pure Appl. Math., 29 (1998), 1099-1109. | MR | Zbl

[11] C. Perez-Garcia-W. H. Schikhof, The Orlicz-Pettis property in $p$-adic analysis, Collect. Math., 43 (1992), 225-233. | MR | Zbl

[12] A. C. M. Van Rooij, Non-archimedean functional analysis, Marcel Dekker, New York (1978). | MR | Zbl

[13] W. H. Schikhof, Locally convex spaces over nonspherically complete valued fields, Bull. Soc. Math. Belg., 38 (1986), 187-224. | MR | Zbl

[14] W. Śliwa, Every infinite-dimensional non-archimedean Fréchet space has an orthogonal basic sequence (to appear in Indag. Math.). | Zbl

[15] J. Van Tiel, Espaces localement $K$-convexes, Indag. Math, 27 (1965), 249-289. | MR | Zbl

[16] J. H. Webb, Schauder decompositions in locally convex spaces, Camb. Phil. Soc., 76 (1974), 145-152. | MR | Zbl