On the variety of linear series on a singular curve
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 631-639
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $Y$ be an integral projective curve with $g := p_{a}(Y) \geq 2$. For all positive integers $d$, $r$ let $W^{r}_{d}(Y)(\text{}^{**})$ be the set of all $L \in \text{Pic}^{d}(Y)$ with $h^{0}(Y, L) \geq r+1$ and $L$ spanned. Here we prove that if $d \leq g-2$, then $\dim (W^{r}_{d}(Y) (\text{}^{**})) \leq d-3r$ except in a few cases (essentially if $Y$ is a double covering).
@article{BUMI_2002_8_5B_3_a3,
author = {Ballico, E. and Fontanari, C.},
title = {On the variety of linear series on a singular curve},
journal = {Bollettino della Unione matematica italiana},
pages = {631--639},
publisher = {mathdoc},
volume = {Ser. 8, 5B},
number = {3},
year = {2002},
zbl = {1177.14064},
mrnumber = {MR1934371},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/}
}
TY - JOUR AU - Ballico, E. AU - Fontanari, C. TI - On the variety of linear series on a singular curve JO - Bollettino della Unione matematica italiana PY - 2002 SP - 631 EP - 639 VL - 5B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/ LA - en ID - BUMI_2002_8_5B_3_a3 ER -
Ballico, E.; Fontanari, C. On the variety of linear series on a singular curve. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 631-639. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/