On the variety of linear series on a singular curve
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 631-639.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $Y$ be an integral projective curve with $g := p_{a}(Y) \geq 2$. For all positive integers $d$, $r$ let $W^{r}_{d}(Y)(\text{}^{**})$ be the set of all $L \in \text{Pic}^{d}(Y)$ with $h^{0}(Y, L) \geq r+1$ and $L$ spanned. Here we prove that if $d \leq g-2$, then $\dim (W^{r}_{d}(Y) (\text{}^{**})) \leq d-3r$ except in a few cases (essentially if $Y$ is a double covering).
Sia $Y$ una curva proiettiva ridotta e irriducibile con $g:= p_{a}(Y) \geq 2$. Per ogni $d$, $r$ interi positivi sia $W^{r}_{d}(Y)(\text{}^{**})$ l'insieme di tutti gli $L \in \text{Pic}^{d}(Y)$ con $h^{0}(Y, L) \geq r+1$ e $L$ generato dalle sezioni globali. In questo lavoro si dimostra che se $d \leq g-2$, allora $\dim (W^{r}_{d}(Y) (\text{}^{**})) \leq d-3r$ fatte salve rare eccezioni (essenzialmente il caso in cui $Y$ sia un rivestimento doppio della retta proiettiva).
@article{BUMI_2002_8_5B_3_a3,
     author = {Ballico, E. and Fontanari, C.},
     title = {On the variety of linear series on a singular curve},
     journal = {Bollettino della Unione matematica italiana},
     pages = {631--639},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1177.14064},
     mrnumber = {615613},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/}
}
TY  - JOUR
AU  - Ballico, E.
AU  - Fontanari, C.
TI  - On the variety of linear series on a singular curve
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 631
EP  - 639
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/
LA  - en
ID  - BUMI_2002_8_5B_3_a3
ER  - 
%0 Journal Article
%A Ballico, E.
%A Fontanari, C.
%T On the variety of linear series on a singular curve
%J Bollettino della Unione matematica italiana
%D 2002
%P 631-639
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/
%G en
%F BUMI_2002_8_5B_3_a3
Ballico, E.; Fontanari, C. On the variety of linear series on a singular curve. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 631-639. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a3/

[1] E. Arbarello-M. Cornalba, Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981), 1-38. | MR | Zbl

[2] E. Arbarello-M. Cornalba-P. Griffiths-J. Harris, Geometry of Algebraic Curves, I, Springer, 1985. | MR | Zbl

[3] M. Coppens-C. Keem-G. Martens, Primitive linear series on curves, Manuscripta Math., 77 (1992), 237-264. | MR | Zbl

[4] E. D. Davis, On the geometric interpretation of seminormality, Proc. Amer. Math. Soc., 68 (1978), 1-5. | MR | Zbl

[5] D. Eisenbud-J. Koh-M. Stillman, Determinantal equations for curves of high degree, Amer. J. Math., 110 (1988), 513-539. | MR | Zbl

[6] M. Homma, Singular hyperelliptic curves, Manuscripta Math., 98 (1999), 21-36. | MR | Zbl

[7] M. Homma, Separable gonality of a Gorenstein curve, Mathematica Contemporânea (to appear). | MR | Zbl

[8] T. Kato-C. Keem, G. Martens' dimension theorem for curves of odd gonality, Geom. Dedicata, 78 (1999), 301-313. | MR | Zbl

[9] H. Martens, On the variety of special divisors on a curve, J. reine angew. Math., 227 (1967), 111-120. | MR | Zbl

[10] G. Tamme, Teilkörper höheren Gesclechts eines algebraischen Funktionenkörpers, Arch. Math. (Basel), 23 (1972), 257-259. | MR | Zbl

[11] C. Traverso, Seminormality and Picard groups, Ann. Sc. Norm. Sup., 25 (1970), 287-304. | fulltext mini-dml | MR | Zbl